Latent variable techniques for categorical data

被引:1
|
作者
Lancaster, G
Green, M
机构
[1] Univ Liverpool, Div Stat & OR, Med Stat Unit, Liverpool L69 3BX, Merseyside, England
[2] Univ Lancaster, Ctr Appl Stat, Lancaster LA1 4YW, England
基金
英国经济与社会研究理事会;
关键词
latent variable; item-response analysis; linear score model; empirical Bayes estimate; linear score; log-bilinear model;
D O I
10.1023/A:1014886619553
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Two useful statistical methods for generating a latent variable are described and extended to incorporate polytomous data and additional covariates. Item response analysis is not well-known outside its area of application, mainly because the procedures to fit the models are computer intensive and not routinely available within general statistical software packages. The linear score technique is less computer intensive, straightforward to implement and has been proposed as a good approximation to item response analysis. Both methods have been implemented in the standard statistical software package GLIM 4.0, and are compared to determine their effectiveness.
引用
收藏
页码:153 / 161
页数:9
相关论文
共 50 条
  • [21] Group Comparisons in the Presence of Missing Data Using Latent Variable Modeling Techniques
    Raykov, Tenko
    Marcoulides, George A.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2010, 17 (01) : 134 - 149
  • [22] Lawsuit lead time prediction: Comparison of data mining techniques based on categorical response variable
    dos Santos Gruginskie, Lucia Adriana
    Roehe Vaccaro, Guilherme Luis
    [J]. PLOS ONE, 2018, 13 (06):
  • [23] Estimation and selection for the latent block model on categorical data
    Christine Keribin
    Vincent Brault
    Gilles Celeux
    Gérard Govaert
    [J]. Statistics and Computing, 2015, 25 : 1201 - 1216
  • [24] Latent Gaussian process for anomaly detection in categorical data
    Lv, Fengmao
    Liang, Tao
    Zhao, Jiayi
    Zhuo, Zhongliu
    Wu, Jinzhao
    Yang, Guowu
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 220
  • [25] Estimation and selection for the latent block model on categorical data
    Keribin, Christine
    Brault, Vincent
    Celeux, Gilles
    Govaert, Gerard
    [J]. STATISTICS AND COMPUTING, 2015, 25 (06) : 1201 - 1216
  • [26] Multiple comparisons with a control for a latent variable model with ordered categorical responses
    Lu, Tong-Yu
    Poon, Wai-Yin
    Cheung, Siu Hung
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2015, 24 (06) : 949 - 967
  • [27] Clustering and variable selection for categorical multivariate data
    Bontemps, Dominique
    Toussile, Wilson
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 2344 - 2371
  • [28] Improved Fuzzy Clustering Techniques for Categorical Data
    Saha, Indrajit
    Maulik, Ujjwal
    [J]. IAENG TRANSACTIONS ON ENGINEERING TECHNOLOGIES VOL 1, 2009, 1089 : 82 - +
  • [29] The Effects of Educational Diversity in a National Sample of Law Students: Fitting Multilevel Latent Variable Models in Data With Categorical Indicators
    Gottfredson, Nisha C.
    Panter, A. T.
    Daye, Charles E.
    Allen, Walter F.
    Wightman, Linda F.
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2009, 44 (03) : 305 - 331
  • [30] A Bayesian analysis of bivariate ordered categorical responses using a latent variable regression model: Application to diabetic retinopathy data
    Kazemnejad, Anoshirvan
    Zayeri, Farid
    Hamzah, Nor Aishah
    Gharaaghaji, Rasool
    Salehi, Masoud
    [J]. SCIENTIFIC RESEARCH AND ESSAYS, 2010, 5 (11): : 1264 - 1273