Latent Gaussian process for anomaly detection in categorical data

被引:3
|
作者
Lv, Fengmao [1 ,2 ]
Liang, Tao [3 ]
Zhao, Jiayi [1 ,2 ]
Zhuo, Zhongliu [4 ]
Wu, Jinzhao [5 ]
Yang, Guowu [4 ]
机构
[1] Southwestern Univ Finance & Econ, Ctr Stat Res, Chengdu 611130, Peoples R China
[2] Southwestern Univ Finance & Econ, Sch Stat, Chengdu 611130, Peoples R China
[3] Tencent, Platform & Content Grp, Shenzhen 518052, Peoples R China
[4] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[5] Guangxi Univ Nationalities, Guangxi Key Lab Hybrid Computat & IC Design Anal, Nanning 530006, Peoples R China
基金
中国国家自然科学基金;
关键词
Anomaly detection; Categorical data; Gaussian process; Data-efficient learning;
D O I
10.1016/j.knosys.2021.106896
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a semi-supervised approach towards anomaly detection in multivariate categorical data. Our goal is to learn a model that can distinguish the anomalous data, given a small set of training data from the normal class. To this end, our approach learns the probability distribution of normal instances with the assumption that the categorical data are generated from a continuous latent space. Gaussian process is adopted to construct the generative model. As a non-parametric Bayesian model, Gaussian process can adapt its model complexity according to the data size. Hence, our approach can be effective when the training dataset is small. Comprehensive experiments over different benchmarks clearly demonstrate the effectiveness of our approach. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Anomaly Detection for Categorical Observations Using Latent Gaussian Process
    Lv, Fengmao
    Yang, Guowu
    Wu, Jinzhao
    Liu, Chuan
    Yang, Yuhong
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2017, PT V, 2017, 10638 : 285 - 296
  • [2] Generative classification model for categorical data based on latent Gaussian process
    Lv, Fengmao
    Yang, Guowu
    Zhu, William
    Liu, Chuan
    [J]. PATTERN RECOGNITION LETTERS, 2017, 92 : 56 - 61
  • [3] Anomaly Detection Methods for Categorical Data: A Review
    Taha, Ayman
    Hadi, Ali S.
    [J]. ACM COMPUTING SURVEYS, 2019, 52 (02)
  • [4] Latent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data
    Gal, Yarin
    Chen, Yutian
    Ghahramani, Zoubin
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 645 - 654
  • [5] Anomaly detection in streaming data with gaussian process based stochastic differential equations
    Glyn-Davies, Alex
    Girolami, Mark
    [J]. PATTERN RECOGNITION LETTERS, 2022, 153 : 254 - 260
  • [6] GAUSSIAN PROCESS FOR ACTIVITY MODELING AND ANOMALY DETECTION
    Liao, Wentong
    Rosenhahn, Bodo
    Yang, Michael Ying
    [J]. ISPRS GEOSPATIAL WEEK 2015, 2015, II-3 (W5): : 467 - 474
  • [7] Iterative Selection of Categorical Variables for Log Data Anomaly Detection
    Landauer, Max
    Hoeld, Georg
    Wurzenberger, Markus
    Skopik, Florian
    Rauber, Andreas
    [J]. COMPUTER SECURITY - ESORICS 2021, PT I, 2021, 12972 : 757 - 777
  • [8] Latent change-point detection in ordinal categorical data
    Wang, Junjie
    Ding, Dong
    Su, Qin
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2019, 35 (02) : 504 - 516
  • [9] Anomaly Detection in Video Surveillance via Gaussian Process
    Li, Nannan
    Wu, Xinyu
    Guo, Huiwen
    Xu, Dan
    Ou, Yongsheng
    Chen, Yen-Lun
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (06)
  • [10] Hierarchical Anomaly Detection Using a Multioutput Gaussian Process
    Cho, Woojin
    Kim, Youngrae
    Park, Jinkyoo
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020, 17 (01) : 261 - 272