Comparison of clustering algorithms for analog modulation classification

被引:42
|
作者
Guldemir, H [1 ]
Sengur, A [1 ]
机构
[1] Firat Univ, Dept Elect & Comp Sci, Tech Educ Fac, TR-23119 Elazig, Turkey
关键词
modulation recognition; modulation classification; clustering;
D O I
10.1016/j.eswa.2005.07.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study introduces a comparative study of implementation of clustering algorithms on classification of the analog modulated communication signals. A number of key features are used for characterizing the analog modulation types. Four different clustering algorithms are used for classifying the analog signals. These most representative clustering techniques are K-means clustering, fuzzy C-means clustering, mountain clustering and subtractive clustering. Performance comparison of these clustering algorithms and the advantages and disadvantages of the methods are examined. The validity analysis is performed. The study is supported with computer simulations. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:642 / 649
页数:8
相关论文
共 50 条
  • [31] Comparison the Quality of Classification Algorithms
    Skalska, Hana
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS 2005, 2005, : 344 - 349
  • [32] Multistage Clustering based Automatic Modulation Classification
    Kalam, Lamia M.
    Theagarajan, Lakshmi N.
    2019 IEEE 89TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-SPRING), 2019,
  • [33] Combining clustering and SVM for automatic modulation classification
    Liu, Aisheng
    Zhu, Qi
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2012, 45 (04) : 245 - 253
  • [34] Experimental comparison of the diagnostic capabilities of classification and clustering algorithms for the QoS management in an autonomic IoT platform
    Morales, Luis
    Ouedraogo, Clovis Anicet
    Aguilar, Jose
    Chassot, Christophe
    Medjiah, Samir
    Drira, Khalil
    SERVICE ORIENTED COMPUTING AND APPLICATIONS, 2019, 13 (03) : 199 - 219
  • [35] Experimental comparison of the diagnostic capabilities of classification and clustering algorithms for the QoS management in an autonomic IoT platform
    Luis Morales
    Clovis Anicet Ouedraogo
    Jose Aguilar
    Christophe Chassot
    Samir Medjiah
    Khalil Drira
    Service Oriented Computing and Applications, 2019, 13 : 199 - 219
  • [36] Clustering algorithms for Stokes space modulation format recognition
    Boada, Ricard
    Borkowski, Robert
    Monroy, Idelfonso Tafur
    OPTICS EXPRESS, 2015, 23 (12): : 15521 - 15531
  • [37] Comparison of Clustering Methods for Obesity Classification
    Ahn, S. H.
    Wang, C.
    Shin, G. W.
    Park, D.
    Kang, Y. H.
    Joibi, J. C.
    Yun, M. H.
    2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEE IEEM), 2018, : 1821 - 1825
  • [38] Toward integrating feature selection algorithms for classification and clustering
    Liu, H
    Yu, L
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (04) : 491 - 502
  • [39] On the performance of high dimensional data clustering and classification algorithms
    Ericson, Kathleen
    Pallickara, Shrideep
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2013, 29 (04): : 1024 - 1034
  • [40] EPIC: Efficient Integration of Partitional Clustering Algorithms for Classification
    Garg, Vikas K.
    Murty, M. N.
    SIMULATED EVOLUTION AND LEARNING, 2010, 6457 : 706 - +