Exponential sums with coefficients of certain Dirichlet series

被引:0
|
作者
Baier, Stephan [1 ]
机构
[1] Univ Gottingen, Math Inst, D-37073 Gottingen, Germany
来源
MONATSHEFTE FUR MATHEMATIK | 2013年 / 169卷 / 02期
基金
欧洲研究理事会;
关键词
Exponential sums; Dirichlet series; Hecke eigenvalues; Piatetski-Shapiro primes;
D O I
10.1007/s00605-011-0372-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under the generalized Lindelof Hypothesis in the t- and q-aspects, we bound exponential sums with coefficients of Dirichlet series belonging to a certain class. We use these estimates to establish a conditional result on squares of Hecke eigenvalues at Piatetski-Shapiro primes.
引用
收藏
页码:127 / 143
页数:17
相关论文
共 50 条
  • [31] On cusp form coefficients in exponential sums
    Pitt, NJE
    QUARTERLY JOURNAL OF MATHEMATICS, 2001, 52 : 485 - 497
  • [32] A CLOSEDNESS OF SET OF DIRICHLET SERIES SUMS
    Krivosheyev, A. S.
    Krivosheyeva, O. A.
    UFA MATHEMATICAL JOURNAL, 2013, 5 (03): : 94 - 117
  • [33] COEFFICIENTS OF EXPONENTIAL SERIES
    BINMORE, KG
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 10 (MAY): : 19 - 24
  • [34] CERTAIN BINOMIAL SUMS WITH RECURSIVE COEFFICIENTS
    Kilic, Emrah
    Ionascu, Eugen J.
    FIBONACCI QUARTERLY, 2010, 48 (02): : 161 - 167
  • [35] ON SUMS OF CERTAIN CLASSES OF SERIES
    Kim, Yong Sup
    Chaudhary, Mahendra Pal
    Rathie, Arjun Kumar
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (04): : 745 - 751
  • [36] ZEROS OF CERTAIN DIRICHLET SERIES
    KARATSUBA, AA
    RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (01) : 207 - 208
  • [37] Dirichlet series with periodic coefficients
    Ishibashi M.
    Kanemitsu S.
    Results in Mathematics, 1999, 35 (1-2) : 70 - 88
  • [38] SUMS OF COEFFICIENTS OF HECKE SERIES
    IVIC, A
    MEURMAN, T
    ACTA ARITHMETICA, 1994, 68 (04) : 341 - 368
  • [39] AN IDENTITY FOR CERTAIN DIRICHLET SERIES
    BERNDT, BC
    GLASGOW MATHEMATICAL JOURNAL, 1968, 9 : 79 - &
  • [40] On zeros of certain Dirichlet series
    A. A. Karatsuba
    Proceedings of the Steklov Institute of Mathematics, 2017, 296 : 6 - 10