A note on sub-Riemannian structures associated with complex Hopf fibrations

被引:1
|
作者
Li, Chengbo [1 ]
Zhan, Huaying [2 ]
机构
[1] Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China
[2] Tianjin Univ Technol, Sch Sci, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
Sub-Riemannian structures; Complex Hopf fibrations; Jacobi equations; Conjugate points; Comparison theorems; Magnetic field on Riemannian manifolds;
D O I
10.1016/j.geomphys.2012.11.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sub-Riemannian structures on odd-dimensional spheres respecting the Hopf fibration naturally appear in quantum mechanics. We study the curvature maps for such a sub-Riemannian structure and express them using the Riemannian curvature tensor of the Fubini-Study metric of the complex projective space and the curvature form of the Hopf fibration. We also estimate the number of conjugate points of a sub-Riemannian extremal in terms of the bounds of the sectional curvature and the curvature form. It presents a typical example for the study of curvature maps and comparison theorems for a general corank 1 sub-Riemannian structure with symmetries done by C. Li and I. Zelenko (2011) in [2]. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [31] Quantum Computational Riemannian and Sub-Riemannian Geodesics
    Shizume, Kosuke
    Nakajima, Takao
    Nakayama, Ryo
    Takahashi, Yutaka
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2012, 127 (06): : 997 - 1008
  • [32] Symmetries of sub-Riemannian surfaces
    Arteaga B, Jose Ricardo
    Malakhaltsev, Mikhail Armenovich
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (01) : 290 - 308
  • [33] Sub-Riemannian Cartan Sphere
    Sachkov, Yu. L.
    [J]. DOKLADY MATHEMATICS, 2022, 106 (03) : 462 - 466
  • [34] Sub-Riemannian interpolation inequalities
    Davide Barilari
    Luca Rizzi
    [J]. Inventiones mathematicae, 2019, 215 : 977 - 1038
  • [35] Subanalyticity of the sub-Riemannian distance
    Jacquet S.
    [J]. Journal of Dynamical and Control Systems, 1999, 5 (3) : 303 - 328
  • [36] Classification of sub-Riemannian manifolds
    Vodop'yanov, SK
    Markina, IG
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1998, 39 (06) : 1096 - 1111
  • [37] Paths in sub-Riemannian geometry
    Jean, F
    [J]. NONLINEAR CONTROL IN THE YEAR 2000, VOL 1, 2000, 258 : 569 - 574
  • [38] Sub-Riemannian Engel Sphere
    Sachkov, Yu L.
    Popov, A. Yu
    [J]. DOKLADY MATHEMATICS, 2021, 104 (02) : 301 - 305
  • [39] A problem of sub-Riemannian geometry
    Petrov, NN
    [J]. DIFFERENTIAL EQUATIONS, 1995, 31 (06) : 911 - 916
  • [40] Sub-Riemannian Cartan Sphere
    Yu. L. Sachkov
    [J]. Doklady Mathematics, 2022, 106 : 462 - 466