Pattern formation and a clustering transition in power-law sequential adsorption

被引:6
|
作者
Biham, O [1 ]
Malcai, O
Lidar, DA
Avnir, D
机构
[1] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 05期
关键词
D O I
10.1103/PhysRevE.59.R4713
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a model that describes adsorption and clustering of particles on a surface. A clustering transition is found that separates between a phase of weakly correlated particle distributions and a phase of strongly correlated distributions in which the particles form localized fractal clusters. The order parameter of the transition is identified and the fractal nature of both phases is examined. The model is relevant to a large class of clustering phenomena such as aggregation and growth on surfaces, population distribution in cities, and plant and bacterial colonies, as well as gravitational clustering. [S1063-651X(99)50404-2].
引用
收藏
页码:R4713 / R4716
页数:4
相关论文
共 50 条
  • [41] Fractality of largest clusters and the percolation transition in power-law diluted chains
    Albuquerque, SS
    de Moura, FABF
    Lyra, ML
    de Souza, AJF
    PHYSICAL REVIEW E, 2005, 72 (01):
  • [42] Phase transition of interacting Bose gases in general power-law potentials
    Zobay, O
    Metikas, G
    Alber, G
    PHYSICAL REVIEW A, 2004, 69 (06): : 063615 - 1
  • [43] ON THE TRANSITION FROM POWER-LAW CREEP TO HARPER-DORN CREEP
    WANG, JN
    SCRIPTA METALLURGICA ET MATERIALIA, 1993, 29 (06): : 733 - 736
  • [44] DIPOLE TRANSITION MATRIX-ELEMENTS FOR SYSTEMS WITH POWER-LAW POTENTIALS
    GRANT, AK
    ROSNER, JL
    PHYSICAL REVIEW D, 1992, 46 (09): : 3862 - 3870
  • [45] Anticorrelations from power-law spectral disorder and conditions for an Anderson transition
    Petersen, Gregory M.
    Sandler, Nancy
    PHYSICAL REVIEW B, 2013, 87 (19):
  • [46] Transition state theory: A generalization to nonequilibrium systems with power-law distributions
    Du Jiulin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (04) : 1718 - 1728
  • [47] Power-law Decay and the Ergodic-Nonergodic Transition in Simple Fluids
    Spyridis, Paul
    Mazenko, Gene F.
    JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (04) : 1030 - 1056
  • [48] Scattering at the Anderson transition:: Power-law banded random matrix model
    Mendez-Bermudez, J. A.
    Varga, I.
    PHYSICAL REVIEW B, 2006, 74 (12)
  • [49] Transition in the Flow of Power-Law Fluids through Isotropic Porous Media
    Zami-Pierre, F.
    de Loubens, R.
    Quintard, M.
    Davit, Y.
    PHYSICAL REVIEW LETTERS, 2016, 117 (07)
  • [50] Convective to absolute instability transition in the Prats flow of a power-law fluid
    Alves, Leonardo S. de B.
    Barletta, Antonio
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2015, 94 : 270 - 282