Simulation of wave interactions with MHD

被引:4
|
作者
Batchelor, D. [1 ]
Abla, G. [2 ]
Bateman, G. [3 ]
Bernholdt, D. [1 ]
Berry, L. [1 ]
Bonoli, P. [4 ]
Bramley, R. [5 ]
Breslau, J. [6 ]
Chance, M. [6 ]
Chen, J. [6 ]
Choi, M. [2 ]
Elwasif, W. [1 ]
Fu, G. [6 ]
Harvey, R. [7 ]
Jaeger, E. [1 ]
Jardin, S. [6 ]
Jenkins, T. [10 ]
Keyes, D. [8 ]
Klasky, S. [1 ]
Kruger, S. [9 ]
Ku, L. [6 ]
Lynch, V. [1 ]
McCune, D. [6 ]
Ramos, J. [4 ]
Schissel, D. [2 ]
Schnack, D. [10 ]
Wright, J. [4 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[2] Gen Atom, San Diego, CA 92186 USA
[3] Lehigh Univ, Bethlehem, PA 18015 USA
[4] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[5] Indiana Univ, Bloomington, IN 47405 USA
[6] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[7] CompX, Del Mar, CA 92014 USA
[8] Columbia Univ, New York, NY 10027 USA
[9] Tech X, Boulder, CO 80303 USA
[10] Univ Wisconsin, Madison, WI 53706 USA
来源
SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING | 2008年 / 125卷
关键词
D O I
10.1088/1742-6596/125/1/012039
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the,Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RF effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] General problem of MHD wave diffraction by MHD inhomogeneity of arbitrary shape
    Alexandrova, A.A.
    Alexandrov, Y.N.
    Khizhnyak, N.A.
    Mathematical Methods in Electromagnetic Theory, MMET, Conference Proceedings, 1998, 2 : 649 - 651
  • [42] MHD shock interactions in coronal structures
    Grib, SA
    Koutchmy, S
    Sazonova, VN
    SOLAR PHYSICS, 1996, 169 (01) : 151 - 166
  • [43] General problem of MHD wave diffraction by MHD inhomogeneity of arbitrary shape
    Alexandrova, AA
    Alexandrov, YN
    Khizhnyak, NA
    1998 INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY, VOLS 1 AND 2, 1998, : 649 - 651
  • [44] MHD simple waves and the divergence wave
    Webb, G. M.
    Pogorelov, N. V.
    Zank, G. P.
    TWELFTH INTERNATIONAL SOLAR WIND CONFERENCE, 2010, 1216 : 300 - 303
  • [45] MHD wave conversion in plasma waveguides
    Fedorov, E
    Mazur, N
    Pilipenko, V
    Yumoto, K
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1998, 103 (A11): : 26595 - 26605
  • [46] Anisotropic wave turbulence in electron MHD
    Galtier, S
    Bhattacharjee, A
    PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 : B691 - B701
  • [47] MHD WAVE BREAKING IN THE OUTER PLASMASPHERE
    MOORE, TE
    GALLAGHER, DL
    HORWITZ, JL
    COMFORT, RH
    GEOPHYSICAL RESEARCH LETTERS, 1987, 14 (10) : 1007 - 1010
  • [48] Numerical simulation of ionospheric convection with a global MHD simulation
    Saita, Satoko
    Fujita, Shigeru
    Kadokura, Akira
    Tanaka, Takashi
    Tanaka, Yoshimasa
    NONEQUILIBRIUM THERMODYNAMICS AND STATISTICAL PHYSICS: FROM RATIONAL MODELING TO ITS APPLICATIONS, 2018, 1035
  • [49] Simulation of diffusing-wave spectroscopy for studying the interactions of electrorheological particles
    Zhang, LF
    Jiang, H
    Xu, J
    Zhou, LW
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (1-2): : 89 - 94
  • [50] Numerical Simulation of Interactions between Waves and Pendulum Wave Power Converter
    Tian, Yufeng
    Huang, Yan
    ADVANCES IN ENERGY SCIENCE AND TECHNOLOGY, PTS 1-4, 2013, 291-294 : 1949 - 1953