Simulation of wave interactions with MHD

被引:4
|
作者
Batchelor, D. [1 ]
Abla, G. [2 ]
Bateman, G. [3 ]
Bernholdt, D. [1 ]
Berry, L. [1 ]
Bonoli, P. [4 ]
Bramley, R. [5 ]
Breslau, J. [6 ]
Chance, M. [6 ]
Chen, J. [6 ]
Choi, M. [2 ]
Elwasif, W. [1 ]
Fu, G. [6 ]
Harvey, R. [7 ]
Jaeger, E. [1 ]
Jardin, S. [6 ]
Jenkins, T. [10 ]
Keyes, D. [8 ]
Klasky, S. [1 ]
Kruger, S. [9 ]
Ku, L. [6 ]
Lynch, V. [1 ]
McCune, D. [6 ]
Ramos, J. [4 ]
Schissel, D. [2 ]
Schnack, D. [10 ]
Wright, J. [4 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[2] Gen Atom, San Diego, CA 92186 USA
[3] Lehigh Univ, Bethlehem, PA 18015 USA
[4] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[5] Indiana Univ, Bloomington, IN 47405 USA
[6] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[7] CompX, Del Mar, CA 92014 USA
[8] Columbia Univ, New York, NY 10027 USA
[9] Tech X, Boulder, CO 80303 USA
[10] Univ Wisconsin, Madison, WI 53706 USA
来源
SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING | 2008年 / 125卷
关键词
D O I
10.1088/1742-6596/125/1/012039
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the,Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RF effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] PLASMA-WAVE SIGNATURES IN THE MAGNETOTAIL RECONNECTION REGION - MHD SIMULATION AND RAY-TRACING
    OMURA, Y
    GREEN, JL
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1993, 98 (A6) : 9189 - 9199
  • [32] MHD simulation of moving arcs
    Kosse, S.
    Wendt, M.
    Uhrlandt, D.
    Weltmann, K. -D.
    Franck, Ch.
    2007 IEEE PULSED POWER CONFERENCE, VOLS 1-4, 2007, : 1013 - +
  • [33] MHD Simulation of Prominence Eruption
    Fan, Yuhong
    ASTROPHYSICAL JOURNAL, 2018, 862 (01):
  • [34] MHD Simulation of Laboratory Jets
    Toropina, Olga
    Bisnovatyi-Kogan, Gennadiy
    Moiseenko, Sergei
    12TH INTERNATIONAL CONFERENCE ON NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2017, 2018, 1031
  • [35] MHD Simulation of Supernova Remnants
    Wu, D.
    Zhang, M. F.
    Shan, S. S.
    Tian, W. W.
    SUPERNOVA 1987A: 30 YEARS LLATER - COSMIC RAYS AND NUCLEI FROM SUPERNOVAE AND THEIR AFTERMATHS, 2017, 12 (S331): : 174 - 177
  • [36] Astrophysical MHD simulation and visualization
    Dorch, B
    SIMULATION AND VISUALIZATION ON THE GRID, PROCEEDINGS, 2000, 13 : 209 - +
  • [37] MHD Simulation Of Laboratory Jets
    Toropina, O. D.
    Bisnovatyi-Kogan, G. S.
    Moiseenko, S. G.
    HIGH ENERGY PHENOMENA IN RELATIVISTIC OUTFLOWS VII, HEPRO VII, 2020,
  • [38] Global and Kinetic MHD Simulation by the Gpic-MHD Code
    Hiroshi NAITOU
    Yusuke YAMADA
    Kenji KAJIWARA
    Wei-li LEE
    Shinji TOKUDA
    Masatoshi YAGI
    Plasma Science and Technology, 2011, (05) : 528 - 534
  • [39] Global and Kinetic MHD Simulation by the Gpic-MHD Code
    Naitou, Hiroshi
    Yamada, Yusuke
    Kajiwara, Kenji
    Lee, Wei-li
    Tokuda, Shinji
    Yagi, Masatoshi
    PLASMA SCIENCE & TECHNOLOGY, 2011, 13 (05) : 528 - 534
  • [40] Global and Kinetic MHD Simulation by the Gpic-MHD Code
    Hiroshi NAITOU
    Yusuke YAMADA
    Kenji KAJIWARA
    Weili LEE
    Shinji TOKUDA
    Masatoshi YAGI
    Plasma Science and Technology, 2011, 13 (05) : 528 - 534