Backbone coloring of graphs with galaxy backbones

被引:0
|
作者
Araujo, C. S. [1 ]
Araujo, J. [1 ,2 ]
Silva, A. [1 ]
Cezar, A. A. [1 ]
机构
[1] Univ Fed Ceara, Dept Matemat, ParGO, Fortaleza, Brazil
[2] Univ Montpellier, LIRMM, Montpellier, France
关键词
Graph coloring; Backbone coloring; Brooks' type theorem; TREE BACKBONES;
D O I
10.1016/j.dam.2022.06.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A (proper) k-coloring of a graph G = (V, E) is a function c : V (G) -> {1, ... , k} such that c(u) not equal c(v), for every uv is an element of E(G). Given a graph G and a spanning subgraph H of G, a (circular) q-backbone k-coloring of (G, H) is a k-coloring c of G such that q <= vertical bar c(u) - c(v)vertical bar (q <= vertical bar c(u) - c(v)vertical bar <= k-q), for every edge uv is an element of E(H). The (circular) q-backbone chromatic number of (G, H), denoted by BBCq(G, H) (CBCq(G, H)), is the minimum integer k for which there exists a (circular) q-backbone k-coloring of (G, H). In this work, we (partially) answer three questions posed by Havet et al. (2014), namely, we prove that if G is a planar graph, H is a spanning subgraph of G and q is a positive integer, then: CBCq(G, H) <= 2q + 2 when q >= 3 and H is a galaxy; CBCq(G, H) <= 2q when q >= 4 and H is a matching; and CBC3(G, H) <= 7 when H is a matching and G has no triangles sharing an edge. In addition, we present a polynomial-time algorithm to determine both parameters for any pair (G, H), whenever G has bounded treewidth. Finally, we show how to fix a mistake in a proof that BBC2(G, M) <= Delta(G) + 1, for any matching M of an arbitrary graph G (Miskuf et al., 2010). (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:2 / 13
页数:12
相关论文
共 50 条
  • [41] The Distance Coloring of Graphs
    Lian Ying MIAO
    Yi Zheng FAN
    Acta Mathematica Sinica,English Series, 2014, 30 (09) : 1579 - 1587
  • [42] Adynamic coloring of graphs
    Surimova, Maria
    Luzar, Borut
    Madaras, Tomas
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 224 - 233
  • [43] Indicated coloring of graphs
    Grzesik, Andrzej
    DISCRETE MATHEMATICS, 2012, 312 (23) : 3467 - 3472
  • [44] COLORING RANDOM GRAPHS
    GRIMMETT, GR
    MCDIARMID, CJH
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (MAR) : 313 - 324
  • [45] LEGAL COLORING OF GRAPHS
    LINIAL, N
    COMBINATORICA, 1986, 6 (01) : 49 - 54
  • [46] COLORING RANDOM GRAPHS
    FURER, M
    SUBRAMANIAN, CR
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 621 : 284 - 291
  • [47] Coloring Drawings of Graphs
    Hertrich, Christoph
    Schroeder, Felix
    Steiner, Raphael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01):
  • [48] On the Comparison of the Distinguishing Coloring and the Locating Coloring of Graphs
    Korivand, M.
    Erfanian, A.
    Baskoro, Edy Tri
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (05)
  • [49] Circular coloring and fractional coloring in planar graphs
    Hu, Xiaolan
    Li, Jiaao
    JOURNAL OF GRAPH THEORY, 2022, 99 (02) : 312 - 343
  • [50] Coloring the distance graphs
    Zapletal, Jindrich
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (03)