Backbone coloring of graphs with galaxy backbones

被引:0
|
作者
Araujo, C. S. [1 ]
Araujo, J. [1 ,2 ]
Silva, A. [1 ]
Cezar, A. A. [1 ]
机构
[1] Univ Fed Ceara, Dept Matemat, ParGO, Fortaleza, Brazil
[2] Univ Montpellier, LIRMM, Montpellier, France
关键词
Graph coloring; Backbone coloring; Brooks' type theorem; TREE BACKBONES;
D O I
10.1016/j.dam.2022.06.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A (proper) k-coloring of a graph G = (V, E) is a function c : V (G) -> {1, ... , k} such that c(u) not equal c(v), for every uv is an element of E(G). Given a graph G and a spanning subgraph H of G, a (circular) q-backbone k-coloring of (G, H) is a k-coloring c of G such that q <= vertical bar c(u) - c(v)vertical bar (q <= vertical bar c(u) - c(v)vertical bar <= k-q), for every edge uv is an element of E(H). The (circular) q-backbone chromatic number of (G, H), denoted by BBCq(G, H) (CBCq(G, H)), is the minimum integer k for which there exists a (circular) q-backbone k-coloring of (G, H). In this work, we (partially) answer three questions posed by Havet et al. (2014), namely, we prove that if G is a planar graph, H is a spanning subgraph of G and q is a positive integer, then: CBCq(G, H) <= 2q + 2 when q >= 3 and H is a galaxy; CBCq(G, H) <= 2q when q >= 4 and H is a matching; and CBC3(G, H) <= 7 when H is a matching and G has no triangles sharing an edge. In addition, we present a polynomial-time algorithm to determine both parameters for any pair (G, H), whenever G has bounded treewidth. Finally, we show how to fix a mistake in a proof that BBC2(G, M) <= Delta(G) + 1, for any matching M of an arbitrary graph G (Miskuf et al., 2010). (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:2 / 13
页数:12
相关论文
共 50 条
  • [31] On Coloring Resilient Graphs
    Kun, Jeremy
    Reyzin, Lev
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE, PT II, 2014, 8635 : 517 - 528
  • [32] ACYCLIC COLORING OF GRAPHS
    ALON, N
    MCDIARMID, C
    REED, B
    RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (03) : 277 - 288
  • [33] COLORING AND CONTRACTIONS OF GRAPHS
    MAMEDOV, VK
    IZVESTIYA AKADEMII NAUK AZERBAIDZHANSKOI SSR SERIYA FIZIKO-TEKHNICHESKIKH I MATEMATICHESKIKH NAUK, 1982, (03): : 114 - 117
  • [34] Classifying coloring graphs
    Beier, Julie
    Fierson, Janet
    Haas, Ruth
    Russell, Heather M.
    Shavo, Kara
    DISCRETE MATHEMATICS, 2016, 339 (08) : 2100 - 2112
  • [35] Linear coloring of graphs
    Yuster, R
    DISCRETE MATHEMATICS, 1998, 185 (1-3) : 293 - 297
  • [36] On Indicated Coloring of Graphs
    Raj, R. Pandiya
    Raj, S. Francis
    Patil, H. P.
    GRAPHS AND COMBINATORICS, 2015, 31 (06) : 2357 - 2367
  • [37] COLORING OF UNIVERSAL GRAPHS
    KOMJATH, P
    RODL, V
    GRAPHS AND COMBINATORICS, 1986, 2 (01) : 55 - 60
  • [38] Coloring graphs with crossings
    Oporowski, Bogdan
    Zhao, David
    DISCRETE MATHEMATICS, 2009, 309 (09) : 2948 - 2951
  • [39] On the Comparison of the Distinguishing Coloring and the Locating Coloring of Graphs
    M. Korivand
    A. Erfanian
    Edy Tri Baskoro
    Mediterranean Journal of Mathematics, 2023, 20
  • [40] Coloring spatial graphs
    McAtee, J
    Silver, DS
    Williams, SG
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2001, 10 (01) : 109 - 120