Quadrature Error Estimation for MoM Matrix Entries

被引:0
|
作者
Botha, M. M. [1 ]
Rylander, T. [2 ]
机构
[1] Stellenbosch Univ, Dept Elect & Elect Engn, Stellenbosch, South Africa
[2] Chalmers Univ Technol, Dept Signals & Syst, Gothenburg, Sweden
来源
2017 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA) | 2017年
关键词
BOUNDARY-ELEMENT INTEGRALS; 4-D REACTION INTEGRALS; TRANSFORMATION; MOMENTS; RULES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is concerned with the method of moments (MoM) for electric field integral equation (EFIE) based numerical electromagnetic analysis of conducting surface structures. Inner (source) and outer (testing) integrals are encountered, when evaluating matrix entries. The well-known Radial-Angular-R1-Sqrt (RA-R1-Sqrt) weak near singularity cancellation transformation quadrature scheme for the inner integrals and standard Gaussian numerical integration for the outer integrals, are considered. It is shown that the quadrature error in the matrix entries, due to inner integral evaluation, can be accurately estimated under certain circumstances. A closed-form quadrature error estimate for the RA-R1-Sqrt scheme is employed.
引用
收藏
页码:973 / 975
页数:3
相关论文
共 50 条
  • [31] Time efficiency and error estimation in generating element stiffness matrices of plane triangular elements using Universal Matrix Method and Gauss-Quadrature
    Jeyakarthikeyan, P., V
    Yogeshwaran, R.
    Abdullahi, Hamza Sulayman
    AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) : 965 - 972
  • [32] Robust estimation of the fundamental matrix based on an error model
    Zhong, HX
    Feng, YP
    Pang, YJ
    Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 5082 - 5087
  • [33] Error covariance matrix estimation using ridge estimator
    Luo, June
    Kulasekera, K. B.
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (01) : 257 - 264
  • [34] EFFICIENT ERROR AND VARIANCE ESTIMATION FOR RANDOMIZED MATRIX COMPUTATIONS
    Epperly, Ethan N.
    Tropp, Joel A.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (01): : A508 - A528
  • [35] A bootstrap method for error estimation in randomized matrix multiplication
    Lopes, Miles E.
    Wang, Shusen
    Mahoney, Michael W.
    Journal of Machine Learning Research, 2019, 20
  • [36] A Bootstrap Method for Error Estimation in Randomized Matrix Multiplication
    Lopes, Miles E.
    Wang, Shusen
    Mahoney, Michael W.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [37] Error bounds for Romberg quadrature
    H. Brass
    J.-W. Fischer
    Numerische Mathematik, 1999, 82 : 389 - 408
  • [38] Error bounds for Romberg quadrature
    Brass, H
    Fischer, JW
    NUMERISCHE MATHEMATIK, 1999, 82 (03) : 389 - 408
  • [39] QUADRATURE PROCEDURE WITH ERROR LIMITS
    NICKEL, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1967, S 47 : T68 - &
  • [40] ON THE ERROR OF FILON QUADRATURE FORMULA
    KOHLER, P
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (7-8): : T886 - T889