On non-parametric estimation of the survival function with competing risks

被引:1
|
作者
Kvam, PH [1 ]
Singh, H
机构
[1] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[2] Panjab Univ, Chandigarh 160014, India
关键词
censoring; Gaussian process; increasing failure rate; isotonic; regression; series system;
D O I
10.1111/1467-9469.00264
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The non-parametric maximum likelihood estimators (MLEs) are derived for survival functions associated with individual risks or system components in a reliability framework. Lifetimes are observed for systems that contain one or more of those components. Analogous to a competing risks model, the system is assumed to fail upon the first instance of any component failure; i.e. the system is configured in series. For any given risk or component type, the asymptotic distribution is shown to depend explicitly on the unknown survival function of the other risks, as well as the censoring distribution. Survival functions with increasing failure rate are investigated as a special case. The order restricted MLE is shown to be consistent under mild assumptions of the underlying component lifetime distributions.
引用
收藏
页码:715 / 724
页数:10
相关论文
共 50 条
  • [21] A Bayesian approach to non-parametric monotone function estimation
    Shively, Thomas S.
    Sager, Thomas W.
    Walker, Stephen G.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 159 - 175
  • [22] Preadjusted non-parametric estimation of a conditional distribution function
    Veraverbeke, Noel
    Gijbels, Irene
    Omelka, Marek
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (02) : 399 - 438
  • [23] Non-parametric estimation of the case fatality ratio with competing risks data: An application to Severe Acute Respiratory Syndrome (SARS)
    Jewell, Nicholas P.
    Lei, Xiudong
    Ghani, Azra C.
    Donnelly, Christl A.
    Leung, Gabriel M.
    Ho, Lai-Ming
    Cowling, Benjamin J.
    Hedley, Anthony J.
    [J]. STATISTICS IN MEDICINE, 2007, 26 (09) : 1982 - 1998
  • [24] Bayesian non-parametric frailty model for dependent competing risks in a repairable systems framework
    Almeida, Marco Pollo
    Paixao, Rafael S.
    Ramos, Pedro L.
    Tomazella, Vera
    Louzada, Francisco
    Ehlers, Ricardo S.
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2020, 204
  • [25] Bounds analysis of competing risks: a non-parametric evaluation of the effect of unemployment benefits on migration
    Melanie Arntz
    Simon M. S. Lo
    Ralf A. Wilke
    [J]. Empirical Economics, 2014, 46 : 199 - 228
  • [26] Non-parametric estimation of relative risk in survival and associated tests
    Wakounig, Samo
    Heinze, Georg
    Schemper, Michael
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2015, 24 (06) : 856 - 870
  • [27] Covariate-adjusted non-parametric survival curve estimation
    Jiang, Honghua
    Symanowski, James
    Qu, Yongming
    Ni, Xiao
    Wang, Yanping
    [J]. STATISTICS IN MEDICINE, 2011, 30 (11) : 1243 - 1253
  • [28] Bounds analysis of competing risks: a non-parametric evaluation of the effect of unemployment benefits on migration
    Arntz, Melanie
    Lo, Simon M. S.
    Wilke, Ralf A.
    [J]. EMPIRICAL ECONOMICS, 2014, 46 (01) : 199 - 228
  • [29] The Estimation of Survival Function for Colon Cancer Data in Tehran Using Non-parametric Bayesian Model
    Abadi, Alireza
    Ahmadi, Farzaneh
    Majd, Hamid Alavi
    Akbari, Mohammad Esmaeil
    Khonbi, Zainab Abolfazli
    Monfared, Esmat Davoudi
    [J]. IRANIAN JOURNAL OF CANCER PREVENTION, 2013, 6 (03) : 141 - 146
  • [30] Non-parametric if and DOA estimation
    Djurovic, I
    Stankovic, L
    [J]. SEVENTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOL 1, PROCEEDINGS, 2003, : 149 - 152