LiMn2O4 as strong polysulfides adsorption carrier for high performance lithium-sulfur batteries

被引:11
|
作者
Ji, Penghui [1 ]
Zeng, Tianbiao [1 ]
Hu, Xuebu [1 ]
Xu, Yunlan [1 ]
Zhou, Guangpeng [1 ]
机构
[1] Chongqing Univ Technol, Coll Chem & Chem Engn, Chongqing 400054, Peoples R China
基金
中国国家自然科学基金;
关键词
LiMn2O4; Adsorption; Mechanism; Shuttle effect; Li-S battery; CATHODE MATERIAL; CARBON; TIO2; NANOCOMPOSITES; INTERLAYER;
D O I
10.1016/j.ssi.2017.12.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Spinel LiMn2O4 was introduced into cathode for lithium-sulfur (Li-S) batteries due to its stable structure, low price, good lithium ion conductivity and much active sites of Mn atoms which could capture polysulfides. Ultraviolet/visible absorption, Fourier transform infrared and X-ray photoelectron spectroscopies verified strong adsorption of Li2S6 by LiMn2O4. It could be explained by following possible adsorption mechanism that part Mn4+ on the surface of LiMn2O4 was reduced and transformed Mn3+ and Mn2+, at the same time, some S-6(2-) was oxidized and transformed Li2S6-x (1 < x < 6) which was adsorbed on S/LiMn2O4 electrode. In addition, S/LiMn2O4 electrode could exhibit the capacities of 924.9 and 728.0 mA h g(-1) at 1st and 300th cycle at 0.5 C, respectively, exceeding S/Acetylene black electrode's capacities of 722.1 and 518.9 mA h g(-1) in sequence. Rate property tests suggested that S/LiMn2O4 electrode had higher capacity than S/C electrode, which as well indicated that LiMn2O4 had better help in limiting polysulfides and promoting utilization of sulfur.
引用
收藏
页码:52 / 58
页数:7
相关论文
共 50 条
  • [21] Structural stability of LiMn2O4 electrodes for lithium batteries
    Thackeray, MM
    Mansuetto, MF
    Bates, JB
    JOURNAL OF POWER SOURCES, 1997, 68 (01) : 153 - 158
  • [22] LiMn2O4 for 4 V lithium-ion batteries
    Manev, V
    Banov, B
    Momchilov, A
    Nassalevskaa, A
    JOURNAL OF POWER SOURCES, 1995, 57 (1-2) : 99 - 103
  • [23] Truncated octahedral LiMn2O4 cathode for high-performance lithium-ion batteries
    Hwang, Bo-Mi
    Kim, Si-Jin
    Lee, Young-Woo
    Park, Han-Chul
    Kim, Da-Mi
    Park, Kyung-Won
    MATERIALS CHEMISTRY AND PHYSICS, 2015, 158 : 138 - 143
  • [24] High performance composites of spinel LiMn2O4/3DG for lithium ion batteries
    Luo, X. D.
    Yin, Y. Z.
    Yuan, M.
    Zeng, W.
    Lin, G.
    Huang, B.
    Li, Y. W.
    Xiao, S. H.
    RSC ADVANCES, 2018, 8 (02) : 877 - 884
  • [25] A functional interlayer as a polysulfides blocking layer for high-performance lithium-sulfur batteries
    Yin, Lingxia
    Dou, Hui
    Wang, Aixiu
    Xu, Guiyin
    Nie, Ping
    Chang, Zhi
    Zhang, Xiaogang
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (02) : 1431 - 1436
  • [26] Mesoporous Spinel LiMn2O4 Nanomaterial as a Cathode for High-Performance Lithium Ion Batteries
    Hwang, Bo-Mi
    Kim, Si-Jin
    Lee, Young-Woo
    Han, Biao
    Kim, Seong-Bae
    Kim, Woo-Seong
    Park, Kyung-Won
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2013, 8 (07): : 9449 - 9458
  • [27] LiMn2O4 for 4 V lithium-ion batteries
    Bulgarian Acad of Sciences, Sofia, Bulgaria
    J Power Sources, 1-2 (99-103):
  • [28] Ultrathin SnS2 nanosheets as robust polysulfides immobilizers for high performance lithium-sulfur batteries
    Li, Meng
    Zhou, Jianbin
    Zhou, Jie
    Guo, Cong
    Han, Ying
    Zhu, Yongchun
    Wang, Gongming
    Qian, Yitai
    MATERIALS RESEARCH BULLETIN, 2017, 96 : 509 - 515
  • [29] Preparation of LiMn2O4 by two methods for lithium ion batteries batteries
    Wu, HM
    Tu, JP
    Yuan, YF
    Li, Y
    Zhao, XB
    Cao, GS
    MATERIALS CHEMISTRY AND PHYSICS, 2005, 93 (2-3) : 461 - 465
  • [30] Chemical Adsorption and Physical Confinement of Polysulfides with the Janus-faced Interlayer for High-performance Lithium-Sulfur Batteries
    Poramane Chiochan
    Siriroong Kaewruang
    Nutthaphon Phattharasupakun
    Juthaporn Wutthiprom
    Thana Maihom
    Jumras Limtrakul
    Sanjog S. Nagarkar
    Satoshi Horike
    Montree Sawangphruk
    Scientific Reports, 7