Inner Product Spaces and Quadratic Functional Equations

被引:0
|
作者
Park, Choonkil [1 ]
Park, Won-Gil [2 ]
Rassias, Themistocles M. [3 ]
机构
[1] Hanyang Univ, Dept Math, Seoul, South Korea
[2] Mokwon Univ, Daejeon, South Korea
[3] Natl Tech Univ Athens, Athens, Greece
来源
关键词
Inner product space; Quadratic mapping; Quadratic Functional equation; IIyers-Ulam stability; ULAM STABILITY; BANACH-SPACES; MAPPINGS;
D O I
10.1007/978-3-319-28443-9_10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer n >= 2 n parallel to Sigma(n)(i=1)x(i)parallel to(2) + Sigma(n)(i=1)parallel to nx(i) - Sigma(n)(j=1)x(j)parallel to(2) = n(2)Sigma(n)(i=1)parallel to x(i)parallel to(2) holds for all x(1),..., x(n) is an element of V. Let V, W be real vector spaces. It is shown that if a mapping f : V -> W satisfies nf(Sigma(n)(i=1)x(i)) + Sigma(n)(i=1)f(nx(i) - Sigma(n)(j=1)x(j)) = n(2)Sigma(n)(i=1)f(x(i)), (n > 2) or nf(Sigma(n)(i=1)x(i)) + Sigma(n)(i=1)f(nx(i) - Sigma(n)(j=1)x(j)) = n(2) + n/2 Sigma(n)(i=1)f(x(i)) + n(2) - n/2 Sigma(n)(i=1)f(-x(i)), (n >= 2) for all x(1),..., x(n) is an element of V, then the mapping f : V -> W is Cauchy additive-quadratic. Furthermore, we prove the Hyers-Ulam stability of the above quadratic functional equations in Banach spaces.
引用
收藏
页码:137 / 151
页数:15
相关论文
共 50 条
  • [31] MIXTURE INNER PRODUCT SPACES AND THEIR APPLICATION TO FUNCTIONAL DATA ANALYSIS
    Lin, Zhenhua
    Mueller, Hans-Georg
    Yao, Fang
    ANNALS OF STATISTICS, 2018, 46 (01): : 370 - 400
  • [32] Completeness of Inner Product Spaces Associated with Functional on Jordan Structures
    Hamhalter, J.
    Turilova, E.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (04) : 661 - 665
  • [33] ON A FUNCTIONAL-EQUATION CHARACTERIZING INNER PRODUCT-SPACES
    ALSINA, C
    ROIG, JLG
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1991, 39 (3-4): : 299 - 304
  • [35] Completeness of Inner Product Spaces Associated with Functional on Jordan Structures
    J. Hamhalter
    E. Turilova
    Lobachevskii Journal of Mathematics, 2020, 41 : 661 - 665
  • [36] A Functional equation related to inner product spaces in non-archimedean normed spaces
    Madjid Eshaghi Gordji
    Razieh Khodabakhsh
    Hamid Khodaei
    Choonkil Park
    Dong Yun shin
    Advances in Difference Equations, 2011
  • [37] A functional equation related to inner product spaces in non-Archimedean normed spaces
    Gordji, Madjid Eshaghi
    Khodabakhsh, Razieh
    Khodaei, Hamid
    Park, Choonkil
    Shin, Dong Yun
    ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [38] PARTIAL INNER PRODUCT-SPACES AND SEMI-INNER PRODUCT-SPACES
    ANTOINE, JP
    GUSTAFSON, K
    ADVANCES IN MATHEMATICS, 1981, 41 (03) : 281 - 300
  • [39] ON THE GENERALIZED ORTHOGONAL STABILITY OF THE PEXIDERIZED QUADRATIC FUNCTIONAL EQUATIONS IN MODULAR SPACES
    El-Fassi, Iz-Iddine
    Kabbaj, Samir
    MATHEMATICA SLOVACA, 2017, 67 (01) : 165 - 178
  • [40] On stability of functional equations related to quadratic mappings in fuzzy Banach spaces
    Seong Sik Kim
    Nawab Hussain
    Yeol Je Cho
    Journal of Inequalities and Applications, 2014