Inner Product Spaces and Quadratic Functional Equations

被引:0
|
作者
Park, Choonkil [1 ]
Park, Won-Gil [2 ]
Rassias, Themistocles M. [3 ]
机构
[1] Hanyang Univ, Dept Math, Seoul, South Korea
[2] Mokwon Univ, Daejeon, South Korea
[3] Natl Tech Univ Athens, Athens, Greece
来源
关键词
Inner product space; Quadratic mapping; Quadratic Functional equation; IIyers-Ulam stability; ULAM STABILITY; BANACH-SPACES; MAPPINGS;
D O I
10.1007/978-3-319-28443-9_10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer n >= 2 n parallel to Sigma(n)(i=1)x(i)parallel to(2) + Sigma(n)(i=1)parallel to nx(i) - Sigma(n)(j=1)x(j)parallel to(2) = n(2)Sigma(n)(i=1)parallel to x(i)parallel to(2) holds for all x(1),..., x(n) is an element of V. Let V, W be real vector spaces. It is shown that if a mapping f : V -> W satisfies nf(Sigma(n)(i=1)x(i)) + Sigma(n)(i=1)f(nx(i) - Sigma(n)(j=1)x(j)) = n(2)Sigma(n)(i=1)f(x(i)), (n > 2) or nf(Sigma(n)(i=1)x(i)) + Sigma(n)(i=1)f(nx(i) - Sigma(n)(j=1)x(j)) = n(2) + n/2 Sigma(n)(i=1)f(x(i)) + n(2) - n/2 Sigma(n)(i=1)f(-x(i)), (n >= 2) for all x(1),..., x(n) is an element of V, then the mapping f : V -> W is Cauchy additive-quadratic. Furthermore, we prove the Hyers-Ulam stability of the above quadratic functional equations in Banach spaces.
引用
收藏
页码:137 / 151
页数:15
相关论文
共 50 条
  • [21] Intuitionistic Menger inner product spaces and applications to integral equations
    Zhang, Shi-sheng
    Goudarzi, M.
    Saadati, R.
    Vaezpour, S. M.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (04) : 415 - 424
  • [22] Quadratic-Quartic Functional Equations in RN-Spaces
    M. Eshaghi Gordji
    M. Bavand Savadkouhi
    Choonkil Park
    Journal of Inequalities and Applications, 2009
  • [23] Approximation of the Quadratic and Cubic Functional Equations in RN-spaces
    Gordji, M. Eshaghi
    Rassias, J. M.
    Savadkouhi, M. Bavand
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2009, 2 (04): : 494 - 507
  • [24] Stability of quadratic functional equations in šerstnev probabilistic normed spaces
    Wang, Zhihua
    Rassias, Themistocles M.
    Eshaghi Gordji, M.
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2015, 77 (04): : 79 - 92
  • [25] Quadratic-Quartic Functional Equations in RN-Spaces
    Gordji, M. Eshaghi
    Savadkouhi, M. Bavand
    Park, Choonkil
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [26] Refined stability of additive and quadratic functional equations in modular spaces
    Kim, Hark-Mahn
    Shin, Hwan-Yong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [27] Refined stability of additive and quadratic functional equations in modular spaces
    Hark-Mahn Kim
    Hwan-Yong Shin
    Journal of Inequalities and Applications, 2017
  • [28] STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS IN SERSTNEV PROBABILISTIC NORMED SPACES
    Wang, Zhihua
    Rassias, Themistocles M.
    Gordji, M. Eshaghi
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2015, 77 (04): : 79 - 92
  • [29] INNER PRODUCT SPACES
    GUDDER, S
    AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (01): : 29 - 36
  • [30] FUZZY STABILITY OF A FUNCTIONAL EQUATION RELATED TO INNER PRODUCT SPACES
    Jang, Sun Young
    Park, Choonkil
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2011, 40 (05): : 711 - 723