Lattices of Neumann oscillators and Maxwell-Bloch equations

被引:5
|
作者
Saksida, Pavle [1 ]
机构
[1] Univ Ljubljana, Dept Math & Mech, Ljubljana 1000, Slovenia
关键词
D O I
10.1088/0951-7715/19/3/012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a family of new nonlinear many-body dynamical systems which we call the Neumann lattices. These are lattices of N interacting Neumann oscillators. The interactions are of magnetic type. We construct large families of conserved quantities for the Neumann lattices. For this purpose we develop a new method of constructing the first integrals which we call the reduced curvature condition. Certain Neumann lattices are natural partial discretizations of the Maxwell-Bloch equations. The Maxwell-Bloch equations have a natural Hamiltonian structure whose discretizations yield twisted Poisson structures (as described by. Severa and Weinstein) for the Neumann lattices. Thus the Neumann lattices are candidates for integrable systems with twisted Poisson structures.
引用
收藏
页码:747 / 768
页数:22
相关论文
共 50 条
  • [41] Simulations of 2D Maxwell-Bloch equations
    Xiong, Jingyi
    Colice, Max
    Schlottau, Friso
    Wagner, Kelvin
    Fornberg, Bengt
    NUSOD '07: PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES, 2007, : 5 - +
  • [42] DESCRIPTION OF SUPERRADIANT DAMPING BY MULTIMODE MAXWELL-BLOCH EQUATIONS
    PICARD, RH
    WILLIS, CR
    PHYSICS LETTERS A, 1971, A 37 (04) : 301 - &
  • [43] Maxwell-Bloch Equations as Predator-Prey System
    Hacinliyan, A. S.
    Aybar, O. O.
    Kusbeyzi, I.
    Temizer, I.
    Akkaya, E. E.
    CHAOTIC SYSTEMS: THEORY AND APPLICATIONS, 2010, : 93 - 100
  • [44] Transparent nonlinear geometric optics and Maxwell-Bloch equations
    Joly, JL
    Metivier, G
    Rauch, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 166 (01) : 175 - 250
  • [45] NUMERICAL-SOLUTIONS OF THE MAXWELL-BLOCH EQUATIONS FOR A FIBER AMPLIFIER
    GROSS, B
    MANASSAH, JT
    OPTICS LETTERS, 1992, 17 (05) : 340 - 342
  • [46] CONTROLLING CHAOS IN THE MAXWELL-BLOCH EQUATIONS WITH TIME-DELAY
    KONISHI, K
    SHIRAO, Y
    KAWABATA, H
    NAGAHARA, T
    INAGAKI, Y
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1993, E76A (07) : 1121 - 1125
  • [47] Nonlinear waves of the Hirota and the Maxwell-Bloch equations in nonlinear optics
    Li Chuan-Zhong
    He Jing-Song
    Porseizan, K.
    CHINESE PHYSICS B, 2013, 22 (04)
  • [48] Darboux transformations and solutions of nonlocal Hirota and Maxwell-Bloch equations
    An, Ling
    Li, Chuanzhong
    Zhang, Lixiang
    STUDIES IN APPLIED MATHEMATICS, 2021, 147 (01) : 60 - 83
  • [49] Quantum Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers
    Hofmann, Holger F.
    Hess, Ortwin
    Physical Review A - Atomic, Molecular, and Optical Physics, 1999, 59 (03): : 2342 - 2358
  • [50] Numerical solutions to 2D Maxwell-Bloch equations
    Xiong, Jingyi
    Colice, Max
    Schlottau, Friso
    Wagner, Kelvin
    Fornberg, Bengt
    OPTICAL AND QUANTUM ELECTRONICS, 2008, 40 (5-6) : 447 - 453