EXTRAPOLATION OF THE FINITE ELEMENT METHOD ON GENERAL MESHES

被引:0
|
作者
Lin, Qun [1 ]
Xie, Hehu [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Extrapolation; finite element method; general meshes; POSTERIORI ERROR ESTIMATORS; SUPERCONVERGENCE; EXPANSION; GRIDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the extrapolation method for second order elliptic problems on general meshes and derive a type of finite element expansion which is dependent of the triangulation. It allows to prove the effectiveness of the extrapolation on general meshes and also validates the extrapolation method can be applied on the automatically produced meshes of the general computing domains. Some numerical examples are given to illustrate the theoretical analysis.
引用
收藏
页码:139 / 153
页数:15
相关论文
共 50 条
  • [41] Exact integration formulas for the finite volume element method on simplicial meshes
    Voitovich, T. V.
    Vandewalle, S.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (05) : 1059 - 1082
  • [42] A simple nodal force distribution method in refined finite element meshes
    Jai Hak Park
    Kyu In Shin
    Dong Won Lee
    Seungyon Cho
    Journal of Mechanical Science and Technology, 2017, 31 : 2221 - 2228
  • [43] OPTIMAL LINFINITY ESTIMATES FOR FINITE-ELEMENT METHOD ON IRREGULAR MESHES
    SCOTT, R
    MATHEMATICS OF COMPUTATION, 1976, 30 (136) : 681 - 697
  • [44] Elastic full waveform inversion on unstructured meshes by the finite element method
    Zhang, Wensheng
    PHYSICA SCRIPTA, 2019, 94 (11)
  • [45] An analytically integrated general finite element method
    Tian, R
    Ohnishi, Y
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 2152 - 2155
  • [46] Boundary-element-based finite element methods for Helmholtz and Maxwell equations on general polyhedral meshes
    Copeland, Dylan M.
    World Academy of Science, Engineering and Technology, 2009, 33 : 915 - 928
  • [47] Extrapolation of the bilinear element approximation for the Poisson equation on anisotropic meshes
    Lin, Qun
    Lin, Jia-Fu
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (05) : 960 - 967
  • [48] METHOD FOR IMPROVING THE ACCURACY OF FINITE-ELEMENT SOLUTIONS USING THE EXTRAPOLATION METHOD.
    Hayata, Kazuya
    Koshiba, Masanori
    Suzuki, Michio
    Electronics and Communications in Japan, Part I: Communications (English translation of Denshi Tsushin Gakkai Ronbunshi), 1986, 69 (02): : 38 - 47
  • [49] A STAGGERED CELL-CENTERED FINITE ELEMENT METHOD FOR COMPRESSIBLE AND NEARLY-INCOMPRESSIBLE LINEAR ELASTICITY ON GENERAL MESHES
    Thanh Hai Ong
    Thi Thao Phuong Hoang
    Bordas, Stephane P. A.
    Nguyen-Xuan, H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (04) : 2051 - 2073
  • [50] A finite element scheme for colliding meshes
    Lai, HC
    Rodger, D
    Coles, PC
    IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) : 1362 - 1364