共 50 条
Integral geometry of tensor valuations
被引:52
|作者:
Hug, Daniel
[1
]
Schneider, Rolf
[2
]
Schuster, Ralph
机构:
[1] Univ Karlsruhe TH, KIT, Fak Math, D-76128 Karlsruhe, Germany
[2] Univ Freiburg, Math Inst, D-79104 Freiburg, Germany
关键词:
Convex body;
Intrinsic volume;
Tensor valuation;
Minkowski tensor;
Integral geometry;
Crofton formula;
Kinematic formula;
D O I:
10.1016/j.aam.2008.04.001
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We prove a complete set of integral geometric formulas of Crofton type (involving integrations over affine Grassmannians) for the Minkowski tensors. of convex bodies. Minkowski tensors are the natural tensor valued valuations generalizing the intrinsic volumes (or Minkowski functionals) of convex bodies. By Hadwiger's general integral geometric theorem, the Crofton formulas yield also kinematic formulas for Minkowski tensors. The explicit calculations of integrals over affine Grassmannians require several integral geometric and combinatorial identities. The latter are derived with the help of Zeilberger's algorithm. (C) 2008 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:482 / 509
页数:28
相关论文