Local tensor valuations on convex polytopes

被引:0
|
作者
Rolf Schneider
机构
[1] Mathematisches Institut,
来源
关键词
Tensor valuation; Minkowski tensor; Convex polytope; Isometry covariance; Characterization theorem; MSC 52A20;
D O I
暂无
中图分类号
学科分类号
摘要
Local versions of the Minkowski tensors of convex bodies in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-dimensional Euclidean space are introduced. An extension of Hadwiger’s characterization theorem for the intrinsic volumes, due to Alesker, states that the continuous, isometry covariant valuations on the space of convex bodies with values in the vector space of symmetric \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-tensors are linear combinations of modified Minkowski tensors. We ask for a local analogue of this characterization, and we prove a classification result for local tensor valuations on polytopes, without a continuity assumption.
引用
收藏
页码:459 / 479
页数:20
相关论文
共 50 条
  • [1] Local tensor valuations on convex polytopes
    Schneider, Rolf
    MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 459 - 479
  • [2] SO(n) Covariant Local Tensor Valuations on Polytopes
    Hug, Daniel
    Schneider, Rolf
    MICHIGAN MATHEMATICAL JOURNAL, 2017, 66 (03) : 637 - 659
  • [3] Tensor valuations on lattice polytopes
    Ludwig, Monika
    Silverstein, Laura
    ADVANCES IN MATHEMATICS, 2017, 319 : 76 - 110
  • [4] Rotation covariant local tensor valuations on convex bodies
    Hug, Daniel
    Schneider, Rolf
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (05)
  • [5] WEAKLY CONTINUOUS VALUATIONS ON CONVEX POLYTOPES
    MCMULLEN, P
    ARCHIV DER MATHEMATIK, 1983, 41 (06) : 555 - 564
  • [6] On extendability by continuity of valuations on convex polytopes
    Alesker, Semyon
    ADVANCES IN MATHEMATICS, 2014, 255 : 352 - 380
  • [7] Local Tensor Valuations
    Daniel Hug
    Rolf Schneider
    Geometric and Functional Analysis, 2014, 24 : 1516 - 1564
  • [8] Local Tensor Valuations
    Hug, Daniel
    Schneider, Rolf
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (05) : 1516 - 1564
  • [9] Tensor Valuations and Their Local Versions
    Hug, Daniel
    Schneider, Rolf
    TENSOR VALUATIONS AND THEIR APPLICATIONS IN STOCHASTIC GEOMETRY AND IMAGING, 2017, 2177 : 27 - 65
  • [10] VALUATIONS AND EULER-TYPE RELATIONS ON CERTAIN CLASSES OF CONVEX POLYTOPES
    MCMULLEN, P
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1977, 35 (JUL) : 113 - 135