Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice

被引:432
|
作者
Fang, Yujie [1 ]
You, Jun [1 ]
Xie, Kabin [1 ]
Xie, Weibo [1 ]
Xiong, Lizhong [1 ]
机构
[1] Huazhong Agr Univ, Natl Ctr Plant Gene Res Wuhan, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
NAC; Stress; Oryza; Transcription factor; Tissue-specific expression;
D O I
10.1007/s00438-008-0386-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
NAM, ATAF, and CUC (NAC) transcription factors comprise a large plant-specific gene family and a few members of this family have been characterized for their roles in plant growth, development, and stress tolerance. In this study, systematic sequence analysis revealed 140 putative NAC or NAC-like genes (ONAC) in rice. Phylogenetic analysis suggested that NAC family can be divided into five groups (I-V). Among them, all the published development-related genes fell into group I, and all the published stress-related NAC genes fell into the group III (namely stress-responsive NAC genes, SNAC). Distinct compositions of the putative motifs were revealed on the basis of NAC protein sequences in rice. Most members contained a complete NAC DNA-binding domain and a variable transcriptional regulation domain. Sequence analysis, together with the organization of putative motifs, indicated distinct structures and potential diverse functions of NAC family in rice. Yeast one-hybrid analysis confirmed that 12 NAC proteins representing different motif compositions can bind the NAC core DNA-binding site. Real-time polymerase chain reaction (PCR) analysis revealed 12 genes with different tissue-specific (such as callus, root, stamen, or immature endosperm) expression patterns, suggesting that these genes may play crucial regulatory roles during growth and development of rice. The expression levels of this family were also checked under various abiotic stresses including drought, salinity, and low temperature. A preliminary check based on our microarray data suggested that more than 40 genes of this family were responsive to drought and/or salt stresses. Among them, 20 genes were further investigated for their stress responsiveness in detail by real-time PCR analysis. Most of these stress-responsive genes belonged to the group III (SNAC). Considering the fact that a very limited number of genes of the NAC family have been characterized, our data provide a very useful reference for functional analysis of this family in rice.
引用
收藏
页码:547 / 563
页数:17
相关论文
共 50 条
  • [41] Analysis of Sequence Variation Underlying Tissue-specific Transcription Factor Binding and Gene Expression
    Lower, Karen M.
    De Gobbi, Marco
    Hughes, Jim R.
    Derry, Christopher J.
    Ayyub, Helena
    Sloane-Stanley, Jacqueline A.
    Vernimmen, Douglas
    Garrick, David
    Gibbons, Richard J.
    Higgs, Douglas R.
    HUMAN MUTATION, 2013, 34 (08) : 1140 - 1148
  • [42] Identification of drought stress-responsive genes in rice (Oryza sativa) by meta-analysis of microarray data
    Preeti Sirohi
    Birendra S. Yadav
    Shadma Afzal
    Ashutosh Mani
    Nand K. Singh
    Journal of Genetics, 2020, 99
  • [43] Lilium pumilum stress-responsive NAC transcription factor LpNAC17 enhances salt stress tolerance in tobacco
    Wang, Yiping
    Cui, Ying
    Liu, Bin
    Wang, Ying
    Sun, Shaoying
    Wang, Jingwen
    Tan, Mengmeng
    Yan, Hao
    Zhang, Yanni
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [44] ZmNAC074, a maize stress-responsive NAC transcription factor, confers heat stress tolerance in transgenic Arabidopsis
    Xi, Yan
    Ling, Qiqi
    Zhou, Yue
    Liu, Xiang
    Qian, Yexiong
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [45] Pearl millet stress-responsive NAC transcription factor PgNAC21 enhances salinity stress tolerance in Arabidopsis
    Shinde, Harshraj
    Dudhate, Ambika
    Tsugama, Daisuke
    Gupta, Shashi K.
    Liu, Shenkui
    Takano, Tetsuo
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2019, 135 : 546 - 553
  • [46] Transcriptome-wide survey and expression analysis of stress-responsive NAC genes in Chrysanthemum lavandulifolium
    Huang, He
    Wang, Yi
    Wang, Shunli
    Wu, Xuan
    Yang, Ke
    Niu, Yajing
    Dai, Silan
    PLANT SCIENCE, 2012, 193 : 18 - 27
  • [47] A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice
    Fang, Yujie
    Liao, Kaifeng
    Du, Hao
    Xu, Yan
    Song, Huazhi
    Li, Xianghua
    Xiong, Lizhong
    JOURNAL OF EXPERIMENTAL BOTANY, 2015, 66 (21) : 6803 - 6817
  • [48] ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis
    Mao, Hude
    Yu, Lijuan
    Han, Ran
    Li, Zhanjie
    Liu, Hui
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2016, 105 : 55 - 66
  • [49] Tissue-specific epigenetics in gene neighborhoods: myogenic transcription factor genes
    Chandra, Sruti
    Terragni, Jolyon
    Zhang, Guoqiang
    Pradhan, Sriharsa
    Haushka, Stephen
    Johnston, Douglas
    Baribault, Carl
    Lacey, Michelle
    Ehrlich, Melanie
    HUMAN MOLECULAR GENETICS, 2015, 24 (16) : 4660 - 4673
  • [50] A chickpea stress-responsive NAC transcription factor, CarNAC5, confers enhanced tolerance to drought stress in transgenic Arabidopsis
    Xingwang Yu
    Yanmin Liu
    Shuang Wang
    Yuan Tao
    Zhankui Wang
    Abudoukeyumu Mijiti
    Ze Wang
    Hua Zhang
    Hao Ma
    Plant Growth Regulation, 2016, 79 : 187 - 197