ZmNAC074, a maize stress-responsive NAC transcription factor, confers heat stress tolerance in transgenic Arabidopsis

被引:17
|
作者
Xi, Yan [1 ]
Ling, Qiqi [1 ]
Zhou, Yue [1 ]
Liu, Xiang [1 ]
Qian, Yexiong [1 ]
机构
[1] Anhui Normal Univ, Coll Life Sci, Anhui Prov Key Lab Conservat & Exploitat Important, Wuhu, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
maize; heat stress; ZmNAC074; transcription factor; ROS homeostasis; stress tolerance; UNFOLDED PROTEIN RESPONSE; EXPRESSION PATTERN; GENE FAMILY; DROUGHT; IDENTIFICATION; MEMBERS; BZIP60; L;
D O I
10.3389/fpls.2022.986628
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The harsh environment such as high temperature greatly limits the growth, development and production of crops worldwide. NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play key regulatory roles in abiotic stress responses of plants. However, the functional roles of NAC TFs in heat stress response of maize remain elusive. In our present study, we identified and isolated a stress-responsive NAC transcription factor gene in maize, designated as ZmNAC074 and orthologous with rice OsNTL3. Further studies revealed that ZmNAC074 may encode a membrane-bound transcription factor (MTF) of NAC family in maize, which is comprised of 517 amino acid residues with a transmembrane domain at the C-terminus. Moreover, ZmNAC074 was highly expressed and induced by various abiotic stresses in maize seedlings, especially in leaf tissues under heat stress. Through generating ZmNAC074 transgenic plants, phenotypic and physiological analyses further displayed that overexpression of ZmNAC074 in transgenic Arabidopsis confers enhanced heat stress tolerance significantly through modulating the accumulation of a variety of stress metabolites, including reactive oxygen species (ROS), antioxidants, malondialdehyde (MDA), proline, soluble protein, chlorophyll and carotenoid. Further, quantitative real-time PCR analysis showed that the expression levels of most ROS scavenging and HSR- and UPR-associated genes in transgenic Arabidopsis were significantly up-regulated under heat stress treatments, suggesting that ZmNAC074 may encode a positive regulator that activates the expression of ROS-scavenging genes and HSR- and UPR-associated genes to enhance plant thermotolerance under heat stress conditions. Overall, our present study suggests that ZmNAC074 may play a crucial role in conferring heat stress tolerance in plants, providing a key candidate regulatory gene for heat stress tolerance regulation and genetic improvement in maize as well as in other crops.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis
    Mao, Hude
    Yu, Lijuan
    Han, Ran
    Li, Zhanjie
    Liu, Hui
    [J]. PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2016, 105 : 55 - 66
  • [2] Membrane-Bound Transcription Factor ZmNAC074 Positively Regulates Abiotic Stress Tolerance in Transgenic Arabidopsis
    Qian, Yexiong
    Xi, Yan
    Xia, Lingxue
    Qiu, Ziling
    Liu, Li
    Ma, Hui
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (22)
  • [3] A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis
    Min Lu
    Sheng Ying
    Deng-Feng Zhang
    Yun-Su Shi
    Yan-Chun Song
    Tian-Yu Wang
    Yu Li
    [J]. Plant Cell Reports, 2012, 31 : 1701 - 1711
  • [4] A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis
    Lu, Min
    Ying, Sheng
    Zhang, Deng-Feng
    Shi, Yun-Su
    Song, Yan-Chun
    Wang, Tian-Yu
    Li, Yu
    [J]. PLANT CELL REPORTS, 2012, 31 (09) : 1701 - 1711
  • [5] A chickpea stress-responsive NAC transcription factor, CarNAC5, confers enhanced tolerance to drought stress in transgenic Arabidopsis
    Xingwang Yu
    Yanmin Liu
    Shuang Wang
    Yuan Tao
    Zhankui Wang
    Abudoukeyumu Mijiti
    Ze Wang
    Hua Zhang
    Hao Ma
    [J]. Plant Growth Regulation, 2016, 79 : 187 - 197
  • [6] A chickpea stress-responsive NAC transcription factor, CarNAC5, confers enhanced tolerance to drought stress in transgenic Arabidopsis
    Yu, Xingwang
    Liu, Yanmin
    Wang, Shuang
    Tao, Yuan
    Wang, Zhankui
    Mijiti, Abudoukeyumu
    Wang, Ze
    Zhang, Hua
    Ma, Hao
    [J]. PLANT GROWTH REGULATION, 2016, 79 (02) : 187 - 197
  • [7] Novel Maize NAC Transcriptional Repressor ZmNAC071 Confers Enhanced Sensitivity to ABA and Osmotic Stress by Downregulating Stress-Responsive Genes in Transgenic Arabidopsis
    He, Lin
    Bian, Jing
    Xu, Jingyu
    Yang, Kejun
    [J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2019, 67 (32) : 8905 - 8918
  • [8] Maize transcription factor ZmNAC2 enhances osmotic stress tolerance in transgenic Arabidopsis
    Chen, Yiyao
    Li, Xinglin
    Xie, Xin
    Liu, Lijun
    Fu, Jingye
    Wang, Qiang
    [J]. JOURNAL OF PLANT PHYSIOLOGY, 2023, 282
  • [9] A maize stress-responsive Di19 transcription factor, ZmDi19-1, confers enhanced tolerance to salt in transgenic Arabidopsis
    Zhang, Xingen
    Cai, Huilin
    Lu, Meng
    Wei, Qiye
    Xu, Lijuan
    Bo, Chen
    Ma, Qing
    Zhao, Yang
    Cheng, Beijiu
    [J]. PLANT CELL REPORTS, 2019, 38 (12) : 1563 - 1578
  • [10] A maize stress-responsive Di19 transcription factor, ZmDi19-1, confers enhanced tolerance to salt in transgenic Arabidopsis
    Xingen Zhang
    Huilin Cai
    Meng Lu
    Qiye Wei
    Lijuan Xu
    Chen Bo
    Qing Ma
    Yang Zhao
    Beijiu Cheng
    [J]. Plant Cell Reports, 2019, 38 : 1563 - 1578