Oxfold: kinetic folding of RNA using stochastic context-free grammars and evolutionary information

被引:13
|
作者
Anderson, James W. J. [1 ]
Haas, Pierre A. [2 ]
Mathieson, Leigh-Anne [3 ]
Volynkin, Vladimir [4 ]
Lyngso, Rune [1 ]
Tataru, Paula [5 ]
Hein, Jotun [1 ]
机构
[1] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[3] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z4, Canada
[4] European Bioinformat Inst, Hinxton CB10 1SD, Cambs, England
[5] Aarhus Univ, Bioinformat Res Ctr, DK-8000 Aarhus C, Denmark
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
SECONDARY STRUCTURE PREDICTION; WEB SERVER; MODELS;
D O I
10.1093/bioinformatics/btt050
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Many computational methods for RNA secondary structure prediction, and, in particular, for the prediction of a consensus structure of an alignment of RNA sequences, have been developed. Most methods, however, ignore biophysical factors, such as the kinetics of RNA folding; no current implementation considers both evolutionary information and folding kinetics, thus losing information that, when considered, might lead to better predictions. Results: We present an iterative algorithm, Oxfold, in the framework of stochastic context-free grammars, that emulates the kinetics of RNA folding in a simplified way, in combination with a molecular evolution model. This method improves considerably on existing grammatical models that do not consider folding kinetics. Additionally, the model compares favourably to non-kinetic thermodynamic models. Availability: http://www.stats.ox.ac.uk/similar to anderson. Contact: anderson@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online.
引用
收藏
页码:704 / 710
页数:7
相关论文
共 50 条
  • [31] CROSS-MOMENTS COMPUTATION FOR STOCHASTIC CONTEXT-FREE GRAMMARS
    Ilic, Velimir M.
    Ciric, Miroslav D.
    Stankovic, Miomir S.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (02): : 289 - 309
  • [32] MOMENTS OF STRING AND DERIVATION LENGTHS OF STOCHASTIC CONTEXT-FREE GRAMMARS
    HUTCHINS, SE
    INFORMATION SCIENCES, 1972, 4 (02) : 179 - &
  • [33] Estimation of stochastic context-free grammars and their use as language models
    Benedí, JM
    Sánchez, JA
    COMPUTER SPEECH AND LANGUAGE, 2005, 19 (03): : 249 - 274
  • [34] REDUCTION OF CONTEXT-FREE GRAMMARS
    TANIGUCHI, K
    KASAMI, T
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1969, 52 (12): : 204 - +
  • [35] CONTEXT-FREE GRAMMARS WITH MEMORY
    MORIYA, E
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1992, E75D (06) : 847 - 851
  • [36] Applying Length-Dependent Stochastic Context-Free Grammars to RNA Secondary Structure Prediction
    Weinberg, Frank
    Nebel, Markus E.
    ALGORITHMS, 2011, 4 (04): : 223 - 238
  • [37] On translating context-free grammars into Lambek grammars
    S. L. Kuznetsov
    Proceedings of the Steklov Institute of Mathematics, 2015, 290 : 63 - 69
  • [38] Context-Free Categorical Grammars
    Bauderon, Michel
    Chen, Rui
    Ly, Olivier
    ALGEBRAIC INFORMATICS, 2009, 5725 : 160 - +
  • [39] REDUCTION OF CONTEXT-FREE GRAMMARS
    TANIGUCHI, K
    KASAMI, T
    INFORMATION AND CONTROL, 1970, 17 (01): : 92 - +
  • [40] RELATEDNESS OF CONTEXT-FREE GRAMMARS
    WALTER, HKG
    COMPUTING, 1979, 22 (01) : 31 - 58