Oxfold: kinetic folding of RNA using stochastic context-free grammars and evolutionary information

被引:13
|
作者
Anderson, James W. J. [1 ]
Haas, Pierre A. [2 ]
Mathieson, Leigh-Anne [3 ]
Volynkin, Vladimir [4 ]
Lyngso, Rune [1 ]
Tataru, Paula [5 ]
Hein, Jotun [1 ]
机构
[1] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[3] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z4, Canada
[4] European Bioinformat Inst, Hinxton CB10 1SD, Cambs, England
[5] Aarhus Univ, Bioinformat Res Ctr, DK-8000 Aarhus C, Denmark
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
SECONDARY STRUCTURE PREDICTION; WEB SERVER; MODELS;
D O I
10.1093/bioinformatics/btt050
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Many computational methods for RNA secondary structure prediction, and, in particular, for the prediction of a consensus structure of an alignment of RNA sequences, have been developed. Most methods, however, ignore biophysical factors, such as the kinetics of RNA folding; no current implementation considers both evolutionary information and folding kinetics, thus losing information that, when considered, might lead to better predictions. Results: We present an iterative algorithm, Oxfold, in the framework of stochastic context-free grammars, that emulates the kinetics of RNA folding in a simplified way, in combination with a molecular evolution model. This method improves considerably on existing grammatical models that do not consider folding kinetics. Additionally, the model compares favourably to non-kinetic thermodynamic models. Availability: http://www.stats.ox.ac.uk/similar to anderson. Contact: anderson@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online.
引用
收藏
页码:704 / 710
页数:7
相关论文
共 50 条
  • [21] Extending Stochastic Context-Free Grammars for an Application in Bioinformatics
    Weinberg, Frank
    Nebel, Markus E.
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, 2010, 6031 : 585 - 595
  • [22] Stochastic context-free graph grammars for glycoprotein modelling
    Shan, BZ
    IMPLEMENTATION AND APPLICATION OF AUTOMATA, 2005, 3317 : 247 - 258
  • [23] Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction
    Dowell, RD
    Eddy, SR
    BMC BIOINFORMATICS, 2004, 5 (1)
  • [24] RNA modeling by combining stochastic context-free grammars and n-gram models
    Salvador, I
    Benedí, JM
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2002, 16 (03) : 309 - 315
  • [25] Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction
    Robin D Dowell
    Sean R Eddy
    BMC Bioinformatics, 5
  • [26] Asymptotic distribution of motifs in a stochastic context-free grammar model of RNA folding
    Poznanovic, Svetlana
    Heitsch, Christine E.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2014, 69 (6-7) : 1743 - 1772
  • [27] Asymptotic distribution of motifs in a stochastic context-free grammar model of RNA folding
    Svetlana Poznanović
    Christine E. Heitsch
    Journal of Mathematical Biology, 2014, 69 : 1743 - 1772
  • [28] Evolutionary induction of stochastic context free grammars
    Keller, B
    Lutz, R
    PATTERN RECOGNITION, 2005, 38 (09) : 1393 - 1406
  • [29] Context-free evolutionary grammars and the structural language of nucleic acids
    Dassow, J
    Mitrana, V
    Salomaa, A
    BIOSYSTEMS, 1997, 43 (03) : 169 - 177
  • [30] CROSS-MOMENTS COMPUTATION FOR STOCHASTIC CONTEXT-FREE GRAMMARS
    Ilic, Velimir M.
    Ciric, Miroslav D.
    Stankovic, Miomir S.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (01): : 41 - 61