OPTIMAL ERROR ESTIMATES OF SPECTRAL PETROV-GALERKIN AND COLLOCATION METHODS FOR INITIAL VALUE PROBLEMS OF FRACTIONAL DIFFERENTIAL EQUATIONS

被引:38
|
作者
Zhang, Zhongqiang [1 ]
Zeng, Fanhai [2 ]
Karniadakis, George Em [2 ]
机构
[1] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
end-point singularity; spectral Petrov-Galerkin; collocation; error estimate; Jacobi polynomials; Laguerre polynomials; DIFFUSION EQUATION; UNBOUNDED-DOMAINS; ELEMENT METHODS; SPACE; APPROXIMATIONS; POLYNOMIALS; ORDER;
D O I
10.1137/140988218
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present optimal error estimates for spectral Petrov-Galerkin methods and spectral collocation methods for linear fractional ordinary differential equations with initial value on a finite interval. We also develop Laguerre spectral Petrov-Galerkin methods and collocation methods for fractional equations on the half line. Numerical results confirm the error estimates.
引用
收藏
页码:2074 / 2096
页数:23
相关论文
共 50 条
  • [1] PETROV-GALERKIN AND SPECTRAL COLLOCATION METHODS FOR DISTRIBUTED ORDER DIFFERENTIAL EQUATIONS
    Kharazmi, Ehsan
    Zayernouri, Mohsen
    Karniadakis, George Em
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (03): : A1003 - A1037
  • [2] A posteriori error estimations of the Petrov-Galerkin methods for fractional Helmholtz equations
    Wenting Mao
    Yanping Chen
    Huasheng Wang
    Numerical Algorithms, 2022, 89 : 1095 - 1127
  • [3] A posteriori error estimations of the Petrov-Galerkin methods for fractional Helmholtz equations
    Mao, Wenting
    Chen, Yanping
    Wang, Huasheng
    NUMERICAL ALGORITHMS, 2022, 89 (03) : 1095 - 1127
  • [4] Error estimates of a spectral Petrov-Galerkin method for two-sided fractional reaction-diffusion equations
    Hao, Zhaopeng
    Lin, Guang
    Zhang, Zhongqiang
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 374
  • [5] Fast spectral Petrov-Galerkin method for fractional elliptic equations
    Hao, Zhaopeng
    Zhang, Zhongqiang
    APPLIED NUMERICAL MATHEMATICS, 2021, 162 : 318 - 330
  • [6] A Petrov-Galerkin spectral element method for fractional elliptic problems
    Kharazmi, Ehsan
    Zayernouri, Mohsen
    Karniadakis, George Em
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 324 : 512 - 536
  • [7] Global Superconvergence Estimates of Petrov-Galerkin Methods for Hyperbolic Equations
    Yang, Bo
    2010 2ND INTERNATIONAL WORKSHOP ON DATABASE TECHNOLOGY AND APPLICATIONS PROCEEDINGS (DBTA), 2010,
  • [8] OPTIMAL ERROR ESTIMATION FOR PETROV-GALERKIN METHODS IN 2 DIMENSIONS
    MORTON, KW
    MURDOCH, T
    SULI, E
    NUMERISCHE MATHEMATIK, 1992, 61 (03) : 359 - 372
  • [9] Bernstein modal basis: Application to the spectral Petrov-Galerkin method for fractional partial differential equations
    Jani, M.
    Babolian, E.
    Javadi, S.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7663 - 7672
  • [10] A spectral Petrov-Galerkin method for optimal control problem governed by a fractional ordinary differential equation
    Wang, Yibo
    Cao, Wanrong
    Li, Shengyue
    APPLIED NUMERICAL MATHEMATICS, 2022, 177 : 18 - 33