LIPSCHITZ EQUIVALENCE OF GENERAL SIERPINSKI CARPETS

被引:12
|
作者
Dai, Meifeng [1 ]
机构
[1] Jiangsu Univ, Fac Sci, Nonlinear Sci Res Ctr, Zhenjiang 212013, Peoples R China
基金
美国国家科学基金会;
关键词
Lipschitz Equivalence; Sierpinski Carpet; Graph-Directed Set; Self-Similar Set; Invariant Set;
D O I
10.1142/S0218348X08004022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, a lot of work has been devoted to the study of the Lipschitz equivalence between self-similar sets. Many related results on self-similar sets of the real line have been well-known under the condition that the similarity ratios equal each other. In this paper, we generalize some results to a more general setting. We mainly study the Lipschitz equivalence between two general Sierpinski carpets in R(2).
引用
收藏
页码:379 / 388
页数:10
相关论文
共 50 条
  • [32] Scaling for random walks on Sierpinski carpets
    Departamento de Física, Universidade Federal Fluminense, Av. Litoranea s/n, Gragoata, CEP 24210-340 Niterói, RJ, Brazil
    Phys Lett Sect A Gen At Solid State Phys, 5-6 (239-242):
  • [33] A NOTE ON HAUSDORFF MEASURES OF SIERPINSKI CARPETS
    Ma Dongkui(South China University of Technology
    Approximation Theory and Its Applications, 2001, (03) : 85 - 89
  • [34] CLASSIFICATION AND UNIVERSAL PROPERTIES OF SIERPINSKI CARPETS
    LIN, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (03): : L163 - L170
  • [35] A SUGGESTED LACUNARITY EXPRESSION FOR SIERPINSKI CARPETS
    LIN, B
    YANG, ZR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (02): : L49 - L52
  • [36] Universal conductance fluctuations in Sierpinski carpets
    Yu-Lei Han
    Zhen-Hua Qiao
    Frontiers of Physics, 2019, 14
  • [37] Universal conductance fluctuations in Sierpinski carpets
    Han, Yu-Lei
    Qiao, Zhen-Hua
    FRONTIERS OF PHYSICS, 2019, 14 (06)
  • [38] Percolation on pre-Sierpinski carpets
    Kumagai, T
    NEW TRENDS IN STOCHASTIC ANALYSIS, 1997, : 288 - 304
  • [39] Random walks on graphical Sierpinski carpets
    Barlow, MT
    Bass, RF
    RANDOM WALKS AND DISCRETE POTENTIAL THEORY, 1999, 39 : 26 - 55
  • [40] Scaling for random walks on Sierpinski carpets
    Reis, FDA
    PHYSICS LETTERS A, 1996, 214 (5-6) : 239 - 242