Density of rational curves on K3 surfaces

被引:0
|
作者
Chen, Xi [1 ]
Lewis, James D. [1 ]
机构
[1] Univ Alberta, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
POINTS; MAPS;
D O I
10.1007/s00208-012-0848-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the dynamics of self rational maps of elliptic surfaces together with deformation theory, we prove that the union of rational curves is dense on a very general surface and that the union of elliptic curves is dense in the 1st jet space of a very general surface, both in the strong topology.
引用
收藏
页码:331 / 354
页数:24
相关论文
共 50 条
  • [31] Counting rational points on k3 surfaces
    McKinnon, D
    JOURNAL OF NUMBER THEORY, 2000, 84 (01) : 49 - 62
  • [32] Plane Rational Quartics and K3 Surfaces
    Kulikov, Vik. S.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2016, 294 (01) : 95 - 128
  • [33] Plane rational quartics and K3 surfaces
    Vik. S. Kulikov
    Proceedings of the Steklov Institute of Mathematics, 2016, 294 : 95 - 128
  • [34] Potential density of rational points for K3 surfaces over function fields
    Hassett, Brendan
    Tschinkel, Yuri
    AMERICAN JOURNAL OF MATHEMATICS, 2008, 130 (05) : 1263 - 1278
  • [35] Nodal elliptic curves on K3 surfaces
    Chen, Nathan
    Greer, Francois
    Yang, Ruijie
    MATHEMATISCHE ANNALEN, 2023, 386 (3-4) : 2349 - 2370
  • [36] Orbits of curves on certain K3 surfaces
    Baragar, A
    COMPOSITIO MATHEMATICA, 2003, 137 (02) : 115 - 134
  • [37] The moduli of singular curves on K3 surfaces
    Kemeny, Michael
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (05): : 882 - 920
  • [38] Nodal elliptic curves on K3 surfaces
    Nathan Chen
    François Greer
    Ruijie Yang
    Mathematische Annalen, 2023, 386 : 2349 - 2370
  • [39] Maximal variation of curves on K3 surfaces
    Dutta, Yajnaseni
    Huybrechts, Daniel
    TUNISIAN JOURNAL OF MATHEMATICS, 2022, 4 (03) : 443 - 464
  • [40] Moduli of nodal curves on K3 surfaces
    Ciliberto, Ciro
    Flamini, Flaminio
    Galati, Concettina
    Knutsen, Andreas Leopold
    ADVANCES IN MATHEMATICS, 2017, 309 : 624 - 654