Efficient K-means clustering using accelerated graphics processors

被引:0
|
作者
Shalom, S. A. Arul [1 ]
Dash, Manoranjan [1 ]
Tue, Minh [2 ]
机构
[1] Nanyang Technol Univ, Sch Comp Engn, 50 Nanyang Ave, Singapore, Singapore
[2] NUS High Sch Math & Sci, Singapore, Singapore
关键词
K-means clustering; GPGPU; computational efficiency;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We exploit the parallel architecture of the Graphics Processing Unit (GPU) used in desktops to efficiently implement the traditional K-means algorithm. Our approach in clustering avoids the need for data and cluster information transfer between the GPU and CPU in between the iterations. In this paper we present the novelties in our approach and techniques employed to represent data, compute distances, centroids and identify the cluster elements using the GPU. We measure performance using the metric: computational time per iteration. Our implementation of k-means clustering on an Nvidia 5900 graphics processor is 4 to 12 times faster than the CPU and 7 to 22 times faster on the Nvidia 8500 graphics processor for various data sizes. We also achieved 12 to 64 times speed gain on the 5900 and 20 to 140 times speed gains on the 8500 graphics processor in computational time per iteration for evaluations with various cluster sizes.
引用
收藏
页码:166 / +
页数:3
相关论文
共 50 条
  • [41] K-means clustering algorithm using the entropy
    Palubinskas, G
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING IV, 1998, 3500 : 63 - 71
  • [42] Crime Analysis using k-means Clustering
    Joshi, Anant
    Sabitha, A. Sai
    Choudhury, Tanupriya
    2017 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND NETWORKS (CINE), 2017, : 33 - 39
  • [43] Offenders Clustering Using FCM & K-Means
    Farzai, Sara
    Ghasemi, Davood
    Marzuni, Seyed Saeed Mirpour
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2015, 15 (04): : 294 - 301
  • [44] K-means clustering using entropy minimization
    Okafor, A
    Pardalos, PM
    THEORY AND ALGORITHMS FOR COOPERATIVE SYSTEMS, 2004, 4 : 339 - 351
  • [45] Efficient ozone concentration trend prediction using ANN and K-means clustering
    Park, Junbum
    EARTH SCIENCE INFORMATICS, 2025, 18 (01)
  • [46] An Efficient Brain Tumor Detection Methodology Using K-Means Clustering Algorithm
    Vijay, J.
    Subhashini, J.
    2013 INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND SIGNAL PROCESSING (ICCSP), 2013, : 653 - 657
  • [47] K-Means Cloning: Adaptive Spherical K-Means Clustering
    Hedar, Abdel-Rahman
    Ibrahim, Abdel-Monem M.
    Abdel-Hakim, Alaa E.
    Sewisy, Adel A.
    ALGORITHMS, 2018, 11 (10):
  • [48] Parallel weighting K-means clustering algorithm based on graphics processing unit
    Huang, Xiaohui
    Xiong, Liyan
    Wang, Juan
    Ye, Yunming
    Li, Chuan
    Journal of Information and Computational Science, 2015, 12 (18): : 7031 - 7040
  • [49] K-means - a fast and efficient K-means algorithms
    Nguyen C.D.
    Duong T.H.
    Nguyen, Cuong Duc (nguyenduccuong@tdt.edu.vn), 2018, Inderscience Publishers, 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (11) : 27 - 45
  • [50] Scalable clustering using graphics processors
    Cao, Feng
    Tung, Anthony K. H.
    Zhou, Aoying
    ADVANCES IN WEB-AGE INFORMATION MANAGEMENT, PROCEEDINGS, 2006, 4016 : 372 - 384