Efficient K-means clustering using accelerated graphics processors

被引:0
|
作者
Shalom, S. A. Arul [1 ]
Dash, Manoranjan [1 ]
Tue, Minh [2 ]
机构
[1] Nanyang Technol Univ, Sch Comp Engn, 50 Nanyang Ave, Singapore, Singapore
[2] NUS High Sch Math & Sci, Singapore, Singapore
关键词
K-means clustering; GPGPU; computational efficiency;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We exploit the parallel architecture of the Graphics Processing Unit (GPU) used in desktops to efficiently implement the traditional K-means algorithm. Our approach in clustering avoids the need for data and cluster information transfer between the GPU and CPU in between the iterations. In this paper we present the novelties in our approach and techniques employed to represent data, compute distances, centroids and identify the cluster elements using the GPU. We measure performance using the metric: computational time per iteration. Our implementation of k-means clustering on an Nvidia 5900 graphics processor is 4 to 12 times faster than the CPU and 7 to 22 times faster on the Nvidia 8500 graphics processor for various data sizes. We also achieved 12 to 64 times speed gain on the 5900 and 20 to 140 times speed gains on the 8500 graphics processor in computational time per iteration for evaluations with various cluster sizes.
引用
收藏
页码:166 / +
页数:3
相关论文
共 50 条
  • [31] Efficient Sparse Spherical k-Means for Document Clustering
    Knittel, Johannes
    Koch, Steffen
    Ertl, Thomas
    PROCEEDINGS OF THE 21ST ACM SYMPOSIUM ON DOCUMENT ENGINEERING (DOCENG '21), 2021,
  • [32] MARIGOLD: Efficient k-means Clustering in High Dimensions
    Mortensen, Kasper Overgaard
    Zardbani, Fatemeh
    Haque, Mohammad Ahsanul
    Agustsson, Steinn Ymir
    Mottin, Davide
    Hofmann, Philip
    Karras, Panagiotis
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2023, 16 (07): : 1740 - 1748
  • [33] An efficient k-means clustering algorithm:: Analysis and implementation
    Kanungo, T
    Mount, DM
    Netanyahu, NS
    Piatko, CD
    Silverman, R
    Wu, AY
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (07) : 881 - 892
  • [34] An effective and efficient hierarchical K-means clustering algorithm
    Qi, Jianpeng
    Yu, Yanwei
    Wang, Lihong
    Liu, Jinglei
    Wang, Yingjie
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2017, 13 (08) : 1 - 17
  • [35] Efficient image segmentation and implementation of K-means clustering
    Deeparani, K.
    Sudhakar, P.
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 8076 - 8079
  • [36] An efficient approximation to the K-means clustering for massive data
    Capo, Marco
    Perez, Aritz
    Lozano, Jose A.
    KNOWLEDGE-BASED SYSTEMS, 2017, 117 : 56 - 69
  • [37] Research on k-means Clustering Algorithm An Improved k-means Clustering Algorithm
    Shi Na
    Liu Xumin
    Guan Yong
    2010 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY AND SECURITY INFORMATICS (IITSI 2010), 2010, : 63 - 67
  • [38] Spectral Comparison Using k-Means Clustering
    Ramachandran, Vignesh R.
    Mitchell, Herbert J.
    Jacobs, Samantha K.
    Tzeng, Nigel H.
    Firpi, Alexer H.
    Rodriguez, Benjamin M.
    2014 IEEE AEROSPACE CONFERENCE, 2014,
  • [39] Customer Segmentation using K-means Clustering
    Kansal, Tushar
    Bahuguna, Suraj
    Singh, Vishal
    Choudhury, Tanupriya
    PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL TECHNIQUES, ELECTRONICS AND MECHANICAL SYSTEMS (CTEMS), 2018, : 135 - 139
  • [40] Motif discovery using K-means clustering
    Sayed, Mohammed
    Park, Juw Won
    BMC BIOINFORMATICS, 2016, 17