A spatially structured adaptive two-stage model for retrieving ground-level PM2.5 concentrations from VIIRS AOD in China

被引:53
|
作者
Yao, Fei [1 ,2 ]
Wu, Jiansheng [1 ,3 ]
Li, Weifeng [4 ,5 ]
Peng, Jian [3 ]
机构
[1] Peking Univ, Shenzhen Grad Sch, Key Lab Urban Habitat Environm Sci & Technol, Shenzhen 518055, Peoples R China
[2] Univ Edinburgh, Sch GeoSci, Edinburgh, Midlothian, Scotland
[3] Peking Univ, Coll Urban & Environm Sci, Minist Educ, Lab Earth Surface Proc, Beijing 100871, Peoples R China
[4] Univ Hong Kong, Dept Urban Planning & Design, Hong Kong, Peoples R China
[5] Univ Hong Kong, Shenzhen Inst Res & Innovat, Shenzhen 518075, Peoples R China
基金
中国国家自然科学基金;
关键词
PM2.5; VIIRS AOD; Spatially structured adaptive; Two-stage model; China; AEROSOL OPTICAL DEPTH; LONG-TERM EXPOSURE; SATELLITE; POLLUTION; REGION; MODIS; GOCI;
D O I
10.1016/j.isprsjprs.2019.03.011
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
While the aerosol optical depth (AOD) product from the Visible Infrared Imaging Suite (VIIRS) instrument has proven effective for estimating regional ground-level particle concentrations with aerodynamic diameters less than 2.5 mu m (PM2.5), its performance at larger spatial scales remains unclear. Despite the wide application of statistical models in building ground-level PM2.5 satellite remote sensing retrieval models, a limited number of studies have considered the spatiotemporal heterogeneities for model structures. Taking China as the study area, we used the VIIRS AOD, together with multi-source auxiliary variables, to develop a spatially structured adaptive two-stage model to estimate ground-level PM2.5 concentrations at a 6-km spatial resolution. To this end, we first defined and calculated a dual distance from the ground-level PM2.5 monitoring data. We then applied the unweighted pair-group method with arithmetic means on dual distances and obtained 13 spatial clusters. Subsequently, we combined the time fixed effects regression (TEFR) model and geographically weighted regression (GWR) model to develop the spatially structured adaptive two-stage model. For each spatial cluster, we examined all possible combinations of auxiliary variables and determined the best model structure according to multiple statistical test results. Finally, we obtained the PM2.5 estimates through regression mapping. At least seven model-fitting data records per day made a good threshold that could best overcome the model overfitting induced by the second-stage GWR model at the minimum price of losing samples. The overall model fitting and ten-fold cross validation (CV) R-2 were 0.82 and 0.60, respectively, under that threshold. Model performances among different spatial clusters differed to a certain extent. High-CV R-2 values always exceeded 0.6 while low CV R-2 values less than 0.5 also existed. Both the size of the model-fitting data records and the extent of urban industrial characteristics of spatial clusters accounted for these differences. The PM2.5 estimates agreed well with the PM2.5 observations with correlation coefficients all exceeding 0.5 at the monthly, seasonal, and annual scales. East of Hu's line and north of the Yangtze River were characterized by high PM2.5 concentrations. This study contributes to the understanding of how well VIIRS AOD can retrieve ground-level PM2.5 concentrations at the national scale and strategies for building ground-level PM2.5 satellite remote sensing retrieval models.
引用
收藏
页码:263 / 276
页数:14
相关论文
共 50 条
  • [31] Estimating ground-level PM2.5 concentrations in Beijing, China using aerosol optical depth and parameters of the temperature inversion layer
    Zang, Zengliang
    Wang, Weiqi
    You, Wei
    Li, Yi
    Ye, Fang
    Wang, Chunming
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 575 : 1219 - 1227
  • [32] POTENTIAL APPLICATION OF DMSP/OLS NIGHTTIME LIGHT DATA FOR ESTIMATING GROUND-LEVEL PM2.5 CONCENTRATIONS
    Li, Xueke
    Zhang, Chuanrong
    Li, Weidong
    Liu, Kai
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5749 - 5752
  • [33] Estimating hourly and continuous ground-level PM2.5 concentrations using an ensemble learning algorithm: The ST-stacking model
    Feng, Luwei
    Li, Yiyan
    Wang, Yumiao
    Du, Qingyun
    ATMOSPHERIC ENVIRONMENT, 2020, 223 (223)
  • [34] ESTIMATING GROUND-LEVEL PM2.5 CONCENTRATION IN BEIJING USING BP ANN MODEL FROM SATELLITE DATA
    Li, Ying
    Xue, Yong
    Guang, Jie
    Mei, Linlu
    She, Lu
    Fan, Cheng
    Chen, Guili
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 4870 - 4873
  • [35] Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model
    Guo, Yuanxi
    Tang, Qiuhong
    Gong, Dao-Yi
    Zhang, Ziyin
    REMOTE SENSING OF ENVIRONMENT, 2017, 198 : 140 - 149
  • [36] Estimation of Regional Ground-Level PM2.5 Concentrations Directly from Satellite Top-of-Atmosphere Reflectance Using A Hybrid Learning Model
    Feng, Yu
    Fan, Shurui
    Xia, Kewen
    Wang, Li
    REMOTE SENSING, 2022, 14 (11)
  • [37] Enhanced PM2.5 estimation across China: An AOD-independent two-stage approach incorporating improved spatiotemporal heterogeneity representations
    Chen, Qingwen
    Shao, Kaiwen
    Zhang, Songlin
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 368
  • [38] Spatio-temporal Features and the Association of Ground-level PM2.5 Concentration and Its Emission in China
    Feng Z.
    Shi R.
    Journal of Geo-Information Science, 2021, 23 (07) : 1221 - 1230
  • [39] Estimating daily ground-level PM2.5 in China with random-forest-based spatiotemporal kriging
    Shao, Yanchuan
    Ma, Zongwei
    Wang, Jianghao
    Bi, Jun
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 740 (740)
  • [40] Prediction of hourly ground-level PM2.5 concentrations 3 days in advance using neural networks with satellite data in eastern China
    Mao, Xi
    Shen, Tao
    Feng, Xiao
    ATMOSPHERIC POLLUTION RESEARCH, 2017, 8 (06) : 1005 - 1015