Actigraph GT3X: Validation and Determination of Physical Activity Intensity Cut Points

被引:250
|
作者
Santos-Lozano, A. [1 ,2 ]
Santin-Medeiros, F. [2 ]
Cardon, G. [3 ]
Torres-Luque, G. [4 ]
Bailon, R. [5 ,6 ]
Bergmeir, C. [7 ]
Ruiz, J. R. [8 ]
Lucia, A. [9 ]
Garatachea, N. [2 ]
机构
[1] Univ Leon, Fac Hlth Sci, Dept Biomed Sci, E-24071 Leon, Spain
[2] Univ Zaragoza, Dept Physiote & Nursing, Huesca 22001, Spain
[3] Univ Ghent, Dept Movement & Sports Sci, B-9000 Ghent, Belgium
[4] Univ Jaen, Fac Sci Educ, Jaen, Spain
[5] Univ Zaragoza, IIS Aragon, Aragon Inst Engn Res I3A, E-50009 Zaragoza, Spain
[6] CIBER Bioingn Biomat & Nanomed CIBER BBN, Madrid, Spain
[7] Univ Granada, ETS Ingn Informat & Telecomunicac, Dept Comp Sci & Artificial Intelligence, E-18071 Granada, Spain
[8] Univ Granada, E-18071 Granada, Spain
[9] Univ Europea Madrid, Madrid, Spain
关键词
activity monitor; physical activity intensity; energy expenditure; ESTIMATING ENERGY-EXPENDITURE; ACTIVITY MONITORS; TRIAXIAL ACCELEROMETER; 2-REGRESSION MODEL; OLDER-ADULTS; ACTICAL ACCELEROMETER; CALIBRATION; CHILDREN; MODERATE; OUTPUT;
D O I
10.1055/s-0033-1337945
中图分类号
G8 [体育];
学科分类号
04 ; 0403 ;
摘要
The aims of this study were: to compare energy expenditure (EE) estimated from the existing GT3X accelerometer equations and EE measured with indirect calorimetry; to define new equations for EE estimation with the GT3X in youth, adults and older people; and to define GT3X vector magnitude (VM) cut points allowing to classify PA intensity in the aforementioned age-groups. The study comprised 31 youth, 31 adults and 35 older people. Participants wore the GT3X (setup: 1-s epoch) over their right hip during 6 conditions of 10-min duration each: resting, treadmill walking/running at 3,5,7, and 9km<bold></bold>h(-1), and repeated sit-stands (30times<bold></bold>min(-1)). The GT3X proved to be a good tool to predict EE in youth and adults (able to discriminate between the aforementioned conditions), but not in the elderly. We defined the following equations: for all age-groups combined, EE (METs)=2.7406+0.00056<bold></bold>VM activity counts (counts<bold></bold>min(-1))-0.008542<bold></bold>age (years)-0.01380<bold></bold> body mass (kg); for youth, METs=1.546618+0.000658<bold></bold>VM activity counts (counts<bold></bold>min(-1)); for adults, METs=2.8323+0.00054<bold></bold>VM activity counts (counts<bold></bold>min(-1))-0.059123<bold></bold>body mass (kg)+1.4410<bold></bold>gender (women=1, men=2); and for the elderly, METs=2.5878+0.00047<bold></bold>VM activity counts (counts<bold></bold>min(-1))-0.6453<bold></bold>gender (women=1, men=2). Activity counts derived from the VM yielded a more accurate EE estimation than those derived from the Y-axis. The GT3X represents a step forward in triaxial technology estimating EE. However, age-specific equations must be used to ensure the correct use of this device.
引用
收藏
页码:975 / 982
页数:8
相关论文
共 50 条
  • [31] ActiGraph GT3X+cut-points for identifying sedentary behaviour in older adults in free-living environments
    Aguilar-Farias, Nicolas
    Brown, Wendy J.
    Peeters, G. M. E. E.
    JOURNAL OF SCIENCE AND MEDICINE IN SPORT, 2014, 17 (03) : 293 - 299
  • [32] Estimating the Physical Activity with Smartphones: Analysis of the Device Position and Comparison with GT3X+Actigraph
    Rodriguez, Victor H.
    Medrano, Carlos
    Plaza, Inmaculada
    Corella, Cristina
    Abarca, Alberto
    Julian, Jose A.
    AMBIENT INTELLIGENCE - SOFTWARE AND APPLICATIONS (ISAMI 2016), 2016, 476 : 49 - 56
  • [33] Technical variability of the GT3X accelerometer
    Santos-Lozano, Alejandro
    Marin, Pedro J.
    Torres-Luque, Gema
    Ruiz, Jonatan R.
    Lucia, Alejandro
    Garatachea, Nuria
    MEDICAL ENGINEERING & PHYSICS, 2012, 34 (06) : 787 - 790
  • [34] Calibration and Cross-Validation of the ActiGraph wGT3X+Accelerometer for the Estimation of Physical Activity Intensity in Children with Intellectual Disabilities
    McGarty, Arlene M.
    Penpraze, Victoria
    Melville, Craig A.
    PLOS ONE, 2016, 11 (10):
  • [35] Physical Activity Category Classification Using The Actigraph Gt9x In Youth
    LaMunion, Samuel R.
    Hibbing, Paul R.
    Kaplan, Andrew S.
    Crouter, Scott E.
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2018, 50 (05): : 295 - 295
  • [36] Wrist-worn Actigraph Cut-points For Classifying Activity Intensity In Spinal Cord Injury
    Veerubhotla, Akhila
    Ding, Dan
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2019, 51 (06): : 359 - 359
  • [37] Calibration and validation of the ActiGraph GT3X+in 2-3 year olds
    Costa, Silvia
    Barber, Sally E.
    Cameron, Noel
    Clemes, Stacy A.
    JOURNAL OF SCIENCE AND MEDICINE IN SPORT, 2014, 17 (06) : 617 - 622
  • [38] Performance Of The Wrist-worn Actigraph GT3X+In Measuring Physical Activity In Older Women
    Smith, Michal T.
    Kishman, Erin E.
    Weaver, Robert G.
    O'Neill, Jennifer R.
    Wang, Xuewen
    MEDICINE & SCIENCE IN SPORTS & EXERCISE, 2022, 54 (09) : 177 - 177
  • [39] ActiGraph GT3X determined variations in "free-living" standing, lying, and sitting duration among sedentary adults
    Barwais, Faisal A.
    Cuddihy, Thomas F.
    Rachele, Jerome N.
    Washington, Tracy L.
    JOURNAL OF SPORT AND HEALTH SCIENCE, 2013, 2 (04) : 249 - 256
  • [40] 基于ActiGraph GT3X监测网球运动能量消耗的研究
    袁川
    陈庆果
    河北体育学院学报, 2017, 31 (04) : 83 - 91