AN APPLICATION OF THE COALESCENCE THEORY TO BRANCHING RANDOM WALKS

被引:0
|
作者
Athreya, K. B. [1 ]
Hong, Jyy-I [2 ]
机构
[1] Iowa State Univ, Ames, IA 50011 USA
[2] Waldorf Coll, Dept Math, Forest City, IA 50436 USA
关键词
Branching process; branching random walk; coalescence; supercritical; infinite mean; CONVERGENCE; INFINITE;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In a discrete-time single-type Galton Watson branching random walk {Z(n), zeta(n)}(n >= 0), where Z(n) is the population of the nth generation and zeta(n) is a collection of the positions on R of the Z(n) individuals in the nth generation, let Y-n be the position of a randomly chosen individual from the nth generation and Z(n) (x) be the number of points zeta(n) that are less than or equal to x for x is an element of R. In this paper we show in the explosive case (i.e. m = E(Z(1)vertical bar Z(0) = 1) = infinity) when the offspring distribution is in the domain of attraction of a stable law of order alpha, 0 < alpha < 1, that the sequence of random functions {Z(n)(x)/Z(n) : -infinity < x < infinity} converges in the finite-dimensional sense to {delta(x) : -infinity < x < infinity}, where delta(x) 1({N <= x}) and N is an N(0,1) random variable.
引用
收藏
页码:893 / 899
页数:7
相关论文
共 50 条
  • [11] Simplicial branching random walks
    Ron Rosenthal
    Journal of Applied and Computational Topology, 2024, 8 (6) : 1751 - 1791
  • [12] ON THE COALESCENCE TIME OF REVERSIBLE RANDOM WALKS
    Oliveira, Roberto Imbuzeiro
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (04) : 2109 - 2128
  • [13] Survival of Branching Random Walks in Random Environment
    Nina Gantert
    Sebastian Müller
    Serguei Popov
    Marina Vachkovskaia
    Journal of Theoretical Probability, 2010, 23 : 1002 - 1014
  • [14] Survival of Branching Random Walks in Random Environment
    Gantert, Nina
    Mueller, Sebastian
    Popov, Serguei
    Vachkovskaia, Marina
    JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (04) : 1002 - 1014
  • [15] Multidimensional branching random walks in random environment
    Comets, Francis
    Popov, Serguei
    ANNALS OF PROBABILITY, 2007, 35 (01): : 68 - 114
  • [16] Localization for branching random walks in random environment
    Hu, Yueyun
    Yoshida, Nobuo
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (05) : 1632 - 1651
  • [17] Branching random walks with random environments in time
    Chunmao Huang
    Xingang Liang
    Quansheng Liu
    Frontiers of Mathematics in China, 2014, 9 : 835 - 842
  • [18] Branching random walks with random environments in time
    Huang, Chunmao
    Liang, Xingang
    Liu, Quansheng
    FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (04) : 835 - 842
  • [19] Aging Renewal Theory and Application to Random Walks
    Schulz, Johannes H. P.
    Barkai, Eli
    Metzler, Ralf
    PHYSICAL REVIEW X, 2014, 4 (01):
  • [20] Catalytic branching random walks in ℤ d with branching at the origin
    Topchiĭ V.A.
    Vatutin V.A.
    Siberian Advances in Mathematics, 2013, 23 (2) : 123 - 153