AN APPLICATION OF THE COALESCENCE THEORY TO BRANCHING RANDOM WALKS

被引:0
|
作者
Athreya, K. B. [1 ]
Hong, Jyy-I [2 ]
机构
[1] Iowa State Univ, Ames, IA 50011 USA
[2] Waldorf Coll, Dept Math, Forest City, IA 50436 USA
关键词
Branching process; branching random walk; coalescence; supercritical; infinite mean; CONVERGENCE; INFINITE;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In a discrete-time single-type Galton Watson branching random walk {Z(n), zeta(n)}(n >= 0), where Z(n) is the population of the nth generation and zeta(n) is a collection of the positions on R of the Z(n) individuals in the nth generation, let Y-n be the position of a randomly chosen individual from the nth generation and Z(n) (x) be the number of points zeta(n) that are less than or equal to x for x is an element of R. In this paper we show in the explosive case (i.e. m = E(Z(1)vertical bar Z(0) = 1) = infinity) when the offspring distribution is in the domain of attraction of a stable law of order alpha, 0 < alpha < 1, that the sequence of random functions {Z(n)(x)/Z(n) : -infinity < x < infinity} converges in the finite-dimensional sense to {delta(x) : -infinity < x < infinity}, where delta(x) 1({N <= x}) and N is an N(0,1) random variable.
引用
下载
收藏
页码:893 / 899
页数:7
相关论文
共 50 条
  • [1] Theory of branching and annihilating random walks
    Cardy, J
    Tauber, UC
    PHYSICAL REVIEW LETTERS, 1996, 77 (23) : 4780 - 4783
  • [2] Field Theory of Branching and Annihilating Random Walks
    Cardy, J. L.
    Taeuber, U. C.
    Journal of Statistical Physics, 90 (1-2):
  • [3] Field theory of branching and annihilating random walks
    Cardy, JL
    Tauber, UC
    JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (1-2) : 1 - 56
  • [4] Field Theory of Branching and Annihilating Random Walks
    John L. Cardy
    Uwe C. Täuber
    Journal of Statistical Physics, 1998, 90 : 1 - 56
  • [5] Global survival of branching random walks and tree-like branching random walks
    Bertacchi, Daniela
    Coletti, Cristian F.
    Zucca, Fabio
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (01): : 381 - 402
  • [6] Branching Random Walks and Martingales
    Shi, Zhan
    BRANCHING RANDOM WALKS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLII - 2012, 2015, 2151 : 19 - 28
  • [7] Cookie branching random walks
    Bartsch, Christian
    Kochler, Michael
    Kochler, Thomas
    Mueller, Sebastian
    Popov, Serguei
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (01): : 323 - 358
  • [8] On the trace of branching random walks
    Benjamini, Itai
    Mueller, Sebastian
    GROUPS GEOMETRY AND DYNAMICS, 2012, 6 (02) : 231 - 247
  • [9] Branching Random Walks with Selection
    Shi, Zhan
    BRANCHING RANDOM WALKS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLII - 2012, 2015, 2151 : 99 - 105
  • [10] MINIMA IN BRANCHING RANDOM WALKS
    Addario-Berry, Louigi
    Reed, Bruce
    ANNALS OF PROBABILITY, 2009, 37 (03): : 1044 - 1079