Varieties of posets

被引:4
|
作者
Haviar, A
Lihová, J
机构
[1] Safarik Univ, Inst Math, SK-04154 Kosice, Slovakia
[2] Matej Bell Univ, Dept Math, Fac Nat Sci, SK-97401 Banska Bystrica, Slovakia
[3] Slovak Acad Sci, Math Inst, SK-04001 Kosice, Slovakia
关键词
congruence relation; homomorphism; inf-set; l-subposet; poset; sup-set; variety;
D O I
10.1007/s11083-005-9023-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and investigate the notion of a homomorphism, of a congruence relation, of a substructure of a poset and consequently the notion of a variety of posets. These notions are consistent with those used in lattice theory and multilattice theory. There are given some properties of the lattice of all varieties of posets.
引用
收藏
页码:343 / 356
页数:14
相关论文
共 50 条
  • [31] Tchebyshev Posets
    Gábor Hetyei
    Discrete & Computational Geometry, 2004, 32 : 493 - 520
  • [32] POSETS FOR CONFIGURATIONS
    RENSINK, A
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 630 : 269 - 285
  • [33] Partitioning posets
    Patel, Viresh
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2008, 25 (02): : 131 - 152
  • [34] On multipartite posets
    Agnarsson, Geir
    DISCRETE MATHEMATICS, 2008, 308 (22) : 5284 - 5288
  • [35] Hypercontinuous posets
    Wenfeng Zhang
    Xiaoquan Xu
    Chinese Annals of Mathematics, Series B, 2015, 36 : 195 - 200
  • [36] Representable posets
    Egrot, Rob
    JOURNAL OF APPLIED LOGIC, 2016, 16 : 60 - 71
  • [37] Tchebyshev posets
    Hetyei, G
    DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 32 (04) : 493 - 520
  • [38] Independence posets
    Thomas, Hugh
    Williams, Nathan
    JOURNAL OF COMBINATORICS, 2019, 10 (03) : 545 - 578
  • [39] Cayley Posets
    Garcia-Marco, Ignacio
    Knauer, Kolja
    Mercui-Voyant, Guillaume
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (06)
  • [40] REALIZABLE POSETS
    PIERCE, RS
    VINSONHALER, C
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1990, 7 (03): : 275 - 282