Varieties of posets

被引:4
|
作者
Haviar, A
Lihová, J
机构
[1] Safarik Univ, Inst Math, SK-04154 Kosice, Slovakia
[2] Matej Bell Univ, Dept Math, Fac Nat Sci, SK-97401 Banska Bystrica, Slovakia
[3] Slovak Acad Sci, Math Inst, SK-04001 Kosice, Slovakia
关键词
congruence relation; homomorphism; inf-set; l-subposet; poset; sup-set; variety;
D O I
10.1007/s11083-005-9023-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and investigate the notion of a homomorphism, of a congruence relation, of a substructure of a poset and consequently the notion of a variety of posets. These notions are consistent with those used in lattice theory and multilattice theory. There are given some properties of the lattice of all varieties of posets.
引用
收藏
页码:343 / 356
页数:14
相关论文
共 50 条
  • [21] Orthomodular posets are algebras over bounded posets with involution
    Jenca, Gejza
    SOFT COMPUTING, 2022, 26 (02) : 491 - 498
  • [22] Orthomodular posets are algebras over bounded posets with involution
    Gejza Jenča
    Soft Computing, 2022, 26 : 491 - 498
  • [23] TOLERANCES ON POSETS
    Chajda, Ivan
    Langer, Helmut
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (02) : 725 - 736
  • [24] Partitioning Posets
    Viresh Patel
    Order, 2008, 25 : 131 - 152
  • [25] QUASICONTINUOUS POSETS
    GIERZ, G
    LAWSON, JD
    STRALKA, A
    HOUSTON JOURNAL OF MATHEMATICS, 1983, 9 (02): : 191 - 208
  • [26] Succinct Posets
    Munro, J. Ian
    Nicholson, Patrick K.
    ALGORITHMICA, 2016, 76 (02) : 445 - 473
  • [27] REPRESENTATION OF POSETS
    CHENG, YC
    KEMP, P
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1992, 38 (03): : 269 - 276
  • [28] Chromatic posets
    Dahlberg, Samantha
    She, Adrian
    van Willigenburg, Stephanie
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 184
  • [29] PRODUCING POSETS
    AIGNER, M
    DISCRETE MATHEMATICS, 1981, 35 : 1 - 15
  • [30] Hypercontinuous Posets
    Wenfeng ZHANG
    Xiaoquan XU
    ChineseAnnalsofMathematics(SeriesB), 2015, 36 (02) : 195 - 200