NUMERICAL SIMULATION OF THE NONLINEAR SCHRODINGER EQUATION WITH MULTIDIMENSIONAL PERIODIC POTENTIALS

被引:15
|
作者
Huang, Zhongyi [1 ]
Jin, Shi [1 ,2 ]
Markowich, Peter A. [3 ,4 ]
Sparber, Christof [4 ,5 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[4] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[5] Wolfgang Pauli Inst Vienna, A-1090 Vienna, Austria
来源
MULTISCALE MODELING & SIMULATION | 2008年 / 7卷 / 02期
关键词
nonlinear Schrodinger equation; Bloch decomposition; time-splitting spectral method; Bose-Einstein condensates; Thomas-Fermi approximation; lattice potential;
D O I
10.1137/070699433
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By extending the Bloch-decomposition-based time-splitting spectral method we introduced earlier, we conduct numerical simulations of the dynamics of nonlinear Schrodinger equations subject to periodic and con. ning potentials. We consider this system as a two-scale asymptotic problem with different scalings of the nonlinearity. In particular we discuss (nonlinear) mass transfer between different Bloch bands and also present three-dimensional simulations for lattice Bose-Einstein condensates in the super fluid regime.
引用
收藏
页码:539 / 564
页数:26
相关论文
共 50 条
  • [41] Orbital stability of periodic waves for the nonlinear Schrodinger equation
    Gallay, Thierry
    Haragus, Mariana
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2007, 19 (04) : 825 - 865
  • [42] Quasilinear theory for the nonlinear Schrodinger equation with periodic coefficients
    Medvedev, SB
    Fedoruk, MP
    JETP LETTERS, 2004, 79 (01) : 16 - 20
  • [43] Nonlinear perturbations of a periodic Schrodinger equation with supercritical growth
    Figueiredo, Giovany M.
    Miyagaki, Olimpio H.
    Moreira, Sandra Im.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05): : 2379 - 2394
  • [44] On the construction of almost periodic solutions for a nonlinear Schrodinger equation
    Pöschel, J
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 : 1537 - 1549
  • [45] Periodic and Bloch Solutions to a Magnetic Nonlinear Schrodinger Equation
    Clapp, Monica
    Iturriaga, Renato
    Szulkin, Andrzej
    ADVANCED NONLINEAR STUDIES, 2009, 9 (04) : 639 - 655
  • [46] Stability of small periodic waves for the nonlinear Schrodinger equation
    Gallay, Thierry
    Haragus, Mariana
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 234 (02) : 544 - 581
  • [47] Rogue periodic waves of the focusing nonlinear Schrodinger equation
    Chen, Jinbing
    Pelinovsky, Dmitry E.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2210):
  • [48] Remarks on some periodic solutions of the nonlinear Schrodinger equation
    Grecu, D.
    Visinescu, Anca
    SIX INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION, 2007, 899 : 365 - +
  • [49] Quasi-periodic solutions in a nonlinear Schrodinger equation
    Geng, Jiansheng
    Yi, Yingfei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (02) : 512 - 542
  • [50] Some real, periodic stationary solutions of the one-dimensional nonlinear Schrodinger equation for constant potentials
    Torres-Vega, G.
    VIII INTERNATIONAL CONGRESS OF ENGINEERING PHYSICS, 2017, 792