Galerkin projected residual method applied to diffusion-reaction problems

被引:3
|
作者
Dutra do Carmo, Eduardo Gomes [1 ]
Alvarez, Gustavo Benitez [2 ]
Rochinha, Fernando Alves [1 ]
Dourado Loula, Abimael Fernando [3 ]
机构
[1] Univ Fed Rio de Janeiro, Ilha Fundao, COPPE, BR-21945970 Rio De Janeiro, Brazil
[2] Univ Fed Fluminense, UFF EEIMVR, BR-27225125 Volta Redonda, RJ, Brazil
[3] Lab Nacl Comp Cient, LNCC, BR-25651070 Petropolis, RJ, Brazil
关键词
Stabilization; GLS; GPR; Diffusion-reaction equation; Finite element method; Second-order boundary value problems;
D O I
10.1016/j.cma.2008.05.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A stabilized finite element method is presented for scalar and linear second-order boundary value problems. The method is obtained by adding to the Galerkin formulation multiple projections of the residual of the differential equation at element level. These multiple projections allow the generation of appropriate number of free stabilization parameters in the element matrix depending on the local space of approximation and on the differential operator. The free parameters can be determined imposing some convergence and/or stability criteria or by postulating the element matrix with the desired stability properties. The element matrix of most stabilized methods (such as, GLS and GGLS methods) can be obtained using this new method with appropriate choices of the stabilization parameters. We applied this formulation to diffusion-reaction problems. Optimal rates of convergency are numerically observed for regular solutions. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:4559 / 4570
页数:12
相关论文
共 50 条
  • [41] NON-LINEAR DIFFUSION-REACTION PROBLEMS WITH TIME-DEPENDENT DIFFUSION-COEFFICIENT
    SPERB, RP
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1979, 30 (04): : 663 - 675
  • [42] A hybridizable discontinuous Galerkin method for fractional diffusion problems
    Cockburn, Bernardo
    Mustapha, Kassem
    [J]. NUMERISCHE MATHEMATIK, 2015, 130 (02) : 293 - 314
  • [43] Hybridized discontinuous Galerkin method for convection–diffusion problems
    Issei Oikawa
    [J]. Japan Journal of Industrial and Applied Mathematics, 2014, 31 : 335 - 354
  • [44] The Induced Dimension Reduction Method Applied to Convection-Diffusion-Reaction Problems
    Astudillo, Reinaldo
    van Gijzen, Martin B.
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS (ENUMATH 2015), 2016, 112 : 295 - 303
  • [45] On a discontinuous Galerkin method for radiation-diffusion problems
    Perugia, I
    Schötzau, D
    Warsa, J
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 687 - 697
  • [46] A STABILIZED GALERKIN METHOD FOR CONVECTION-DIFFUSION PROBLEMS
    DEGROEN, PPN
    VANVELDHUIZEN, M
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (02): : 274 - 297
  • [47] A hybridizable discontinuous Galerkin method for fractional diffusion problems
    Bernardo Cockburn
    Kassem Mustapha
    [J]. Numerische Mathematik, 2015, 130 : 293 - 314
  • [48] A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR STEADY-STATE CONVECTION-DIFFUSION-REACTION PROBLEMS
    Cockburn, Bernardo
    Dong, Bo
    Guzman, Johnny
    Restelli, Marco
    Sacco, Riccardo
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (05): : 3827 - 3846
  • [49] Sinc-Galerkin method for solving system of singular perturbed reaction-diffusion problems
    Secer, Aydin
    Onder, Ismail
    Ozisik, Muslum
    [J]. SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2021, 39 (02): : 203 - 212
  • [50] A high order discontinuous Galerkin method with skeletal multipliers for convection-diffusion-reaction problems
    Kim, Mi-Young
    Shin, Dong-wook
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 343 : 207 - 233