PRECISE ERROR ANALYSIS OF THE LASSO

被引:0
|
作者
Thrampoulidis, Christos [1 ]
Panahi, Ashkan [2 ]
Guo, Daniel [1 ]
Hassibi, Babak [1 ]
机构
[1] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA
[2] Chalmers Univ Technol, Signal Proc Grp, Gothenburg, Sweden
基金
美国国家科学基金会;
关键词
LASSO; square-root LASSO; normalized squared error; sparse recovery; Gaussian min-max theorem; RECOVERY; SIGNALS; NOISE;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A classical problem that arises in numerous signal processing applications asks for the reconstruction of an unknown, k-sparse signal x(0) is an element of R-n from underdetermined, noisy, linear measurements y = Ax(0) + z is an element of R-m. One standard approach is to solve the following convex program (x) over cap = arg min(x) parallel to y - Ax parallel to(2) + lambda parallel to x parallel to(1), which is known as the l(2)-LASSO. We assume that the entries of the sensing matrix A and of the noise vector z are i.i.d Gaussian with variances 1/m and sigma(2). In the large system limit when the problem dimensions grow to infinity, but in constant rates, we precisely characterize the limiting behavior of the normalized squared error parallel to(x) over cap - x(0)parallel to(2)(2)/sigma(2). Our numerical illustrations validate our theoretical predictions.
引用
收藏
页码:3467 / 3471
页数:5
相关论文
共 50 条
  • [1] The Squared-Error of Generalized LASSO: A Precise Analysis
    Oymak, Samet
    Thrampoulidis, Christos
    Hassibi, Babak
    [J]. 2013 51ST ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2013, : 1002 - 1009
  • [2] PRECISE PERFORMANCE ANALYSIS OF THE LASSO UNDER MATRIX UNCERTAINTIES
    Alrashdi, Ayed M.
    Ben Atitallah, Ismail
    Al-Naffouri, Tareq Y.
    Alouini, Mohamed-Slim
    [J]. 2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 1290 - 1294
  • [3] Estimation Error of the Constrained Lasso
    Zerbib, Nissim
    Li, Yen-Huan
    Hsieh, Ya-Ping
    Cevher, Volkan
    [J]. 2016 54TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2016, : 433 - 438
  • [4] Error analysis on centrifuge with precise linear vibration
    Zou, Zhong-Xian
    Zeng, Ming
    Liu, Yu
    [J]. Zhongguo Guanxing Jishu Xuebao/Journal of Chinese Inertial Technology, 2014, 22 (06): : 839 - 844
  • [5] On the Precise Error Analysis of Support Vector Machines
    Kammoun A.
    Alouinifellow M.-S.
    [J]. IEEE Open Journal of Signal Processing, 2021, 2 : 99 - 118
  • [6] A Sharp Error Analysis for the Fused Lasso, with Application to Approximate Changepoint Screening
    Lin, Kevin
    Sharpnack, James
    Rinaldo, Alessandro
    Tibshirani, Ryan J.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [7] Asymptotically Exact Error Analysis for the Generalized l22-LASSO
    Thrampoulidis, Christos
    Panahi, Ashkan
    Hassibi, Babak
    [J]. 2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 2021 - 2025
  • [8] Precise Error Rate Analysis of Wireless Relay Networks
    Khalil, Muhammad I.
    Berber, Stevan M.
    Sowerby, Kevin W.
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2017, 95 (04) : 5081 - 5096
  • [9] Pseudorange error analysis for precise indoor positioning system
    Pola, Marek
    Bezousek, Pavel
    [J]. JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2017, 68 (03): : 206 - 211
  • [10] Precise Error Rate Analysis of Wireless Relay Networks
    Muhammad I. Khalil
    Stevan M. Berber
    Kevin W. Sowerby
    [J]. Wireless Personal Communications, 2017, 95 : 5081 - 5096