PRECISE ERROR ANALYSIS OF THE LASSO

被引:0
|
作者
Thrampoulidis, Christos [1 ]
Panahi, Ashkan [2 ]
Guo, Daniel [1 ]
Hassibi, Babak [1 ]
机构
[1] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA
[2] Chalmers Univ Technol, Signal Proc Grp, Gothenburg, Sweden
基金
美国国家科学基金会;
关键词
LASSO; square-root LASSO; normalized squared error; sparse recovery; Gaussian min-max theorem; RECOVERY; SIGNALS; NOISE;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A classical problem that arises in numerous signal processing applications asks for the reconstruction of an unknown, k-sparse signal x(0) is an element of R-n from underdetermined, noisy, linear measurements y = Ax(0) + z is an element of R-m. One standard approach is to solve the following convex program (x) over cap = arg min(x) parallel to y - Ax parallel to(2) + lambda parallel to x parallel to(1), which is known as the l(2)-LASSO. We assume that the entries of the sensing matrix A and of the noise vector z are i.i.d Gaussian with variances 1/m and sigma(2). In the large system limit when the problem dimensions grow to infinity, but in constant rates, we precisely characterize the limiting behavior of the normalized squared error parallel to(x) over cap - x(0)parallel to(2)(2)/sigma(2). Our numerical illustrations validate our theoretical predictions.
引用
收藏
页码:3467 / 3471
页数:5
相关论文
共 50 条
  • [31] Model selection via standard error adjusted adaptive lasso
    Wei Qian
    Yuhong Yang
    [J]. Annals of the Institute of Statistical Mathematics, 2013, 65 : 295 - 318
  • [32] Generalised Rank Regression Estimator with Standard Error Adjusted Lasso
    Turkmen, A. S.
    Ozturk, O.
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2016, 58 (01) : 121 - 135
  • [33] Model selection via standard error adjusted adaptive lasso
    Qian, Wei
    Yang, Yuhong
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (02) : 295 - 318
  • [34] NARX model selection based on simulation error minimisation and LASSO
    Bonin, M.
    Seghezza, V.
    Piroddi, L.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (07): : 1157 - 1168
  • [35] Emotion Analysis Based on LASSO
    Sarma, Parthana
    Barma, Shovan
    [J]. PROCEEDINGS OF 2019 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2019, : 72 - 77
  • [36] DOUBLETAKE: Fast and Precise Error Detection via Evidence-Based Dynamic Analysis
    Liu, Tongping
    Curtsinger, Charlie
    Berger, Emery D.
    [J]. 2016 IEEE/ACM 38TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), 2016, : 911 - 922
  • [37] Precise Error Rate Analysis of MIMO System with Interference and Imperfect Channel State Information
    Smadi, Mahmoud A.
    Abu Al-Haija, Qasem
    [J]. 2014 IEEE 27TH CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2014,
  • [38] STATISTICAL EVALUATION OF ERROR FACTORS IN PRECISE GRAVIMETRY
    GRANNELL, RB
    LEGGEWIE, RM
    TERRY, SM
    [J]. GEOPHYSICS, 1977, 42 (05) : 1101 - 1101
  • [39] On error of atmospheric models in GPS precise positioning
    Research Center of GNSS, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
    [J]. Wuhan Daxue Xuebao Xinxi Kexue Ban, 2008, 11 (1106-1109+1197):
  • [40] A Precise Error Bound for Quantum Phase Estimation
    Chappell, James M.
    Lohe, Max A.
    von Smekal, Lorenz
    Iqbal, Azhar
    Abbott, Derek
    [J]. PLOS ONE, 2011, 6 (05):