Estimation Error of the Constrained Lasso

被引:0
|
作者
Zerbib, Nissim [1 ,2 ]
Li, Yen-Huan [1 ]
Hsieh, Ya-Ping [1 ]
Cevher, Volkan [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Informat & Inference Syst LIONS, CH-1015 Lausanne, Switzerland
[2] Ecole Normale Super, Comp Sci Dept, Paris, France
关键词
RECONSTRUCTION; RECOVERY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a non-asymptotic upper bound for the estimation error of the constrained lasso, under the high-dimensional (n << p) setting. In contrast to existing results, the error bound in this paper is sharp, is valid when the parameter to be estimated is not exactly sparse (e.g., when it is weakly sparse), and shows explicitly the effect of over-estimating the l(1)-norm of the parameter to be estimated on the estimation performance. The results of this paper show that the constrained lasso is minimax optimal for estimating a parameter with bounded l(1)-norm, and also for estimating a weakly sparse parameter if its l(1)-norm is accessible.
引用
收藏
页码:433 / 438
页数:6
相关论文
共 50 条
  • [1] A STUDY OF ERROR VARIANCE ESTIMATION IN LASSO REGRESSION
    Reid, Stephen
    Tibshirani, Robert
    Friedman, Jerome
    [J]. STATISTICA SINICA, 2016, 26 (01) : 35 - 67
  • [2] Element-wise estimation error of generalized Fused Lasso
    Zhang, Teng
    Chatterjee, Sabyasachi
    [J]. BERNOULLI, 2023, 29 (04) : 2691 - 2718
  • [3] THE GENERALIZED LASSO IS REDUCIBLE TO A SUBSPACE CONSTRAINED LASSO
    Xu, Hao
    Eis, David J.
    Ramadge, Peter J.
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3268 - 3272
  • [4] Estimation of Error Variance in Regularized Regression Models via Adaptive Lasso
    Wang, Xin
    Kong, Lingchen
    Wang, Liqun
    [J]. MATHEMATICS, 2022, 10 (11)
  • [5] A descent algorithm for constrained LAD-Lasso estimation with applications in portfolio selection
    Shi, Yue
    Ng, Chi Tim
    Feng, Zhiguo
    Yiu, Ka-Fai Cedric
    [J]. JOURNAL OF APPLIED STATISTICS, 2019, 46 (11) : 1988 - 2009
  • [6] Algorithms for Fitting the Constrained Lasso
    Gaines, Brian R.
    Kim, Juhyun
    Zhou, Hua
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (04) : 861 - 871
  • [7] PDE-constrained optimization with error estimation and control
    Hicken, J. E.
    Alonso, J. J.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 263 : 136 - 150
  • [8] PRECISE ERROR ANALYSIS OF THE LASSO
    Thrampoulidis, Christos
    Panahi, Ashkan
    Guo, Daniel
    Hassibi, Babak
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3467 - 3471
  • [9] The Sparsity-Constrained Graphical Lasso
    Fulci, Alessandro
    Paterlini, Sandra
    Taufer, Emanuele
    [J]. MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, MAF2024, 2024, : 172 - 178
  • [10] Constrained Candecomp/Parafac via the Lasso
    Paolo Giordani
    Roberto Rocci
    [J]. Psychometrika, 2013, 78 : 669 - 684