Dietary Effect of Clostridium autoethanogenum Protein on Growth, Intestinal Histology and Flesh Lipid Metabolism of Largemouth Bass (Micropterus salmoides) Based on Metabolomics

被引:10
|
作者
Yang, Pinxian [1 ,2 ,3 ]
Li, Xiaoqin [1 ,2 ,3 ]
Yao, Wenxiang [1 ,2 ,3 ]
Li, Menglu [1 ,2 ,3 ]
Wang, Yuanyuan [1 ,2 ,3 ]
Leng, Xiangjun [1 ,2 ,3 ]
机构
[1] Shanghai Ocean Univ, Natl Demonstrat Ctr Expt Fisheries Sci Educ, Shanghai 201306, Peoples R China
[2] Shanghai Ocean Univ, Ctr Res Environm Ecol & Fish Nutr CREEFN, Minist Agr & Rural Affairs, Shanghai 201306, Peoples R China
[3] Shanghai Ocean Univ, Shanghai Collaborat Innovat Aquat Anim Genet & Bre, Shanghai 201306, Peoples R China
关键词
Clostridium autoethanogenum; largemouth bass; growth; intestinal healthy; lipid metabolomics; FISH-MEAL; ATLANTIC SALMON; SOY PROTEIN; NUTRIENT UTILIZATION; NATURAL-GAS; PERFORMANCE; SALAR; REPLACEMENT; ARGININE; TAURINE;
D O I
10.3390/metabo12111088
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Clostridium autoethanogenum protein (CAP) is a new single-cell protein explored in aquatic feeds in recent years. This study investigated the dietary effects of CAP replacing fishmeal (FM) on the growth, intestinal histology and flesh metabolism of largemouth bass (Micropterus salmoides). In a basal diet containing 700 g/kg of FM, CAP was used to substitute 0%, 15%, 30%, 45%, 70% and 100% of dietary FM to form six isonitrogenous diets (Con, CAP-15, CAP-30, CAP-45, CAP-70, CAP-100) to feed largemouth bass (80.0 g) for 12 weeks. Only the CAP-100 group showed significantly lower weight gain (WG) and a higher feed conversion ratio (FCR) than the control (p < 0.05). A broken-line analysis based on WG and FCR showed that the suitable replacement of FM with CAP was 67.1-68.0%. The flesh n-3/n-6 polyunsaturated fatty acid, intestinal protease activity, villi width and height in the CAP-100 group were significantly lower than those in the control group (p < 0.05). The Kyoto Encyclopedia of Genes and Genomes analysis showed that the metabolic pathway in flesh was mainly enriched in the "lipid metabolic pathway", "amino acid metabolism", "endocrine system" and "carbohydrate metabolism". In conclusion, CAP could successfully replace 67.1-68.0% of dietary FM, while the complete substitution decreased the growth, damaged the intestinal morphology and down-regulated the lipid metabolites.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Dietary effects of fish meal substitution with Clostridium autoethanogenum on flesh quality and metabolomics of largemouth bass (Micropterus salmoides)
    Yang, Pinxian
    Yao, Wenxiang
    Wang, Yuanyuan
    Li, Menglu
    Li, Xiaoqin
    Leng, Xiangjun
    [J]. AQUACULTURE REPORTS, 2022, 23
  • [2] Effects of Dietary Inclusion of Clostridium autoethanogenum Protein on the Growth Performance and Liver Health of Largemouth Bass (Micropterus salmoides)
    Lu, Qisheng
    Xi, Longwei
    Liu, Yulong
    Gong, Yulong
    Su, Jingzhi
    Han, Dong
    Yang, Yunxia
    Jin, Junyan
    Liu, Haokun
    Zhu, Xiaoming
    Xie, Shouqi
    [J]. FRONTIERS IN MARINE SCIENCE, 2021, 8
  • [3] Effect of dietary lipid level on growth, lipid metabolism and oxidative status of largemouth bass, Micropterus salmoides
    Guo, Jia-ling
    Zhou, Yue-lang
    Zhao, Hang
    Chen, Wen-Yan
    Chen, Yong-Jun
    Lin, Shi-Mei
    [J]. AQUACULTURE, 2019, 506 : 394 - 400
  • [4] Appropriate dietary phenylalanine improved growth, protein metabolism and lipid metabolism, and glycolysis in largemouth bass (Micropterus salmoides)
    Yi, Changguo
    Liang, Hualiang
    Xu, Gangchun
    Zhu, Jian
    Wang, Yongli
    Li, Songlin
    Ren, Mingchun
    Chen, Xiaoru
    [J]. FISH PHYSIOLOGY AND BIOCHEMISTRY, 2024, 50 (01) : 349 - 365
  • [5] Appropriate dietary phenylalanine improved growth, protein metabolism and lipid metabolism, and glycolysis in largemouth bass (Micropterus salmoides)
    Changguo Yi
    Hualiang Liang
    Gangchun Xu
    Jian Zhu
    Yongli Wang
    Songlin Li
    Mingchun Ren
    Xiaoru Chen
    [J]. Fish Physiology and Biochemistry, 2024, 50 : 349 - 365
  • [6] Dietary Protein and Lipid Requirements for Juvenile Largemouth Bass, Micropterus salmoides
    Huang, Di
    Wu, Yubo
    Lin, Yayun
    Chen, Jianming
    Karrow, Niel
    Ren, Xing
    Wang, Yan
    [J]. JOURNAL OF THE WORLD AQUACULTURE SOCIETY, 2017, 48 (05) : 782 - 790
  • [7] Effects of dietary protein and lipid levels on the growth performance, feed utilization, and liver histology of largemouth bass (Micropterus salmoides)
    Li, Xinyu
    Zheng, Shixuan
    Ma, Xuekun
    Cheng, Kaimin
    Wu, Guoyao
    [J]. AMINO ACIDS, 2020, 52 (6-7) : 1043 - 1061
  • [8] Effects of dietary protein and lipid levels on the growth performance, feed utilization, and liver histology of largemouth bass (Micropterus salmoides)
    Xinyu Li
    Shixuan Zheng
    Xuekun Ma
    Kaimin Cheng
    Guoyao Wu
    [J]. Amino Acids, 2020, 52 : 1043 - 1061
  • [9] Dietary lysophospholipids improves growth performance and hepatic lipid metabolism of largemouth bass(Micropterus salmoides)
    Mingxiao Che
    Ziye Lu
    Liang Liu
    Ning Li
    Lina Ren
    Shuyan Chi
    [J]. Animal Nutrition, 2023, (02) : 426 - 434
  • [10] Dietary lysophospholipids improves growth performance and hepatic lipid metabolism of largemouth bass (Micropterus salmoides)
    Che, Mingxiao
    Lu, Ziye
    Liu, Liang
    Li, Ning
    Ren, Lina
    Chi, Shuyan
    [J]. ANIMAL NUTRITION, 2023, 13 : 426 - 434