Dietary Effect of Clostridium autoethanogenum Protein on Growth, Intestinal Histology and Flesh Lipid Metabolism of Largemouth Bass (Micropterus salmoides) Based on Metabolomics

被引:12
|
作者
Yang, Pinxian [1 ,2 ,3 ]
Li, Xiaoqin [1 ,2 ,3 ]
Yao, Wenxiang [1 ,2 ,3 ]
Li, Menglu [1 ,2 ,3 ]
Wang, Yuanyuan [1 ,2 ,3 ]
Leng, Xiangjun [1 ,2 ,3 ]
机构
[1] Shanghai Ocean Univ, Natl Demonstrat Ctr Expt Fisheries Sci Educ, Shanghai 201306, Peoples R China
[2] Shanghai Ocean Univ, Ctr Res Environm Ecol & Fish Nutr CREEFN, Minist Agr & Rural Affairs, Shanghai 201306, Peoples R China
[3] Shanghai Ocean Univ, Shanghai Collaborat Innovat Aquat Anim Genet & Bre, Shanghai 201306, Peoples R China
关键词
Clostridium autoethanogenum; largemouth bass; growth; intestinal healthy; lipid metabolomics; FISH-MEAL; ATLANTIC SALMON; SOY PROTEIN; NUTRIENT UTILIZATION; NATURAL-GAS; PERFORMANCE; SALAR; REPLACEMENT; ARGININE; TAURINE;
D O I
10.3390/metabo12111088
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Clostridium autoethanogenum protein (CAP) is a new single-cell protein explored in aquatic feeds in recent years. This study investigated the dietary effects of CAP replacing fishmeal (FM) on the growth, intestinal histology and flesh metabolism of largemouth bass (Micropterus salmoides). In a basal diet containing 700 g/kg of FM, CAP was used to substitute 0%, 15%, 30%, 45%, 70% and 100% of dietary FM to form six isonitrogenous diets (Con, CAP-15, CAP-30, CAP-45, CAP-70, CAP-100) to feed largemouth bass (80.0 g) for 12 weeks. Only the CAP-100 group showed significantly lower weight gain (WG) and a higher feed conversion ratio (FCR) than the control (p < 0.05). A broken-line analysis based on WG and FCR showed that the suitable replacement of FM with CAP was 67.1-68.0%. The flesh n-3/n-6 polyunsaturated fatty acid, intestinal protease activity, villi width and height in the CAP-100 group were significantly lower than those in the control group (p < 0.05). The Kyoto Encyclopedia of Genes and Genomes analysis showed that the metabolic pathway in flesh was mainly enriched in the "lipid metabolic pathway", "amino acid metabolism", "endocrine system" and "carbohydrate metabolism". In conclusion, CAP could successfully replace 67.1-68.0% of dietary FM, while the complete substitution decreased the growth, damaged the intestinal morphology and down-regulated the lipid metabolites.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [41] Dietary valine affects growth performance, intestinal immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides)
    Zhao, Fangyue
    Xu, Pao
    Xu, Gangchun
    Huang, Dongyu
    Zhang, Lu
    Ren, Mingchun
    Liang, Hualiang
    ANIMAL FEED SCIENCE AND TECHNOLOGY, 2023, 295
  • [42] Effects of dietary salidroside on intestinal health, immune parameters and intestinal microbiota in largemouth bass ( Micropterus salmoides )
    Wei, Baocan
    Li, Huang
    Han, Tao
    Luo, Qiulan
    Yang, Min
    Qin, Qiwei
    Chen, Yifang
    Wei, Shina
    FISH & SHELLFISH IMMUNOLOGY, 2024, 151
  • [43] Comparison of Lysophospholipids and Bile Acids on the Growth Performance, Lipid Deposition, and Intestinal Health of Largemouth Bass (Micropterus salmoides)
    Bao, Ming-Yang
    Wang, Zhe
    Nuez-Ortin, Waldo G.
    Zhao, Guiping
    Dehasque, Marleen
    Du, Zhen-Yu
    Zhang, Mei-Ling
    AQUACULTURE NUTRITION, 2024, 2024
  • [44] Effects of Virgin Microplastics on Growth, Intestinal Morphology and Microbiota on Largemouth Bass (Micropterus salmoides)
    Zhang, Chaonan
    Wang, Qiujie
    Wang, Shaodan
    Pan, Zhengkun
    Sun, Di
    Cheng, Yanbo
    Zou, Jixing
    Xu, Guohuan
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [45] Effect of dietary iron (Fe) level on growth performance and health status of largemouth bass (Micropterus salmoides)
    Mao, Xiangjie
    Chen, Wangwang
    Long, Xianmei
    Pan, Xiaomei
    Liu, Guoqing
    Hu, Wenguang
    Gu, Dianchao
    Tan, Qingsong
    AQUACULTURE, 2024, 581
  • [46] Dietary black soldier fly oil enhances growth performance, flesh quality, and health status of largemouth bass(Micropterus salmoides)
    Hailin Yuan
    Junru Hu
    Xiangce Li
    Qiuxuan Sun
    Xiaohong Tan
    Cuihong You
    Yewei Dong
    Yanhua Huang
    Meng Zhou
    Animal Nutrition, 2024, 18 (03) : 234 - 245
  • [47] Dietary butylated hydroxytoluene improves lipid metabolism, antioxidant and anti-apoptotic response of largemouth bass (Micropterus salmoides)
    Yu, L. L.
    Yu, H. H.
    Liang, X. F.
    Li, N.
    Wang, X.
    Li, F. H.
    Wu, X. F.
    Zheng, Y. H.
    Xue, M.
    Liang, X. F.
    FISH & SHELLFISH IMMUNOLOGY, 2018, 72 : 220 - 229
  • [48] Dietary black soldier fly oil enhances growth performance, flesh quality, and health status of largemouth bass (Micropterus salmoides)
    Yuan, Hailin
    Hu, Junru
    Li, Xiangce
    Sun, Qiuxuan
    Tan, Xiaohong
    You, Cuihong
    Dong, Yewei
    Huang, Yanhua
    Zhou, Meng
    ANIMAL NUTRITION, 2024, 18
  • [49] Inositol Inclusion Affects Growth, Body Composition, Antioxidant Performance, and Lipid Metabolism of Largemouth Bass (Micropterus salmoides)
    Xu, Yinglin
    Gong, Ye
    Li, Songlin
    Zhou, Yue
    Ma, Zhixiao
    Yi, Ganfeng
    Chen, Naisong
    Wang, Weilong
    Huang, Xuxiong
    AQUACULTURE NUTRITION, 2024, 2024
  • [50] Dietary lipid sources affect growth performance, lipid deposition, antioxidant capacity and inflammatory response of largemouth bass ( Micropterus salmoides )
    Gong, Ye
    Chen, Shiwen
    Wang, Zhenjie
    Li, Wenfei
    Xie, Ruitao
    Zhang, Haitao
    Huang, Xuxiong
    Chen, Naisong
    Li, Songlin
    FISH & SHELLFISH IMMUNOLOGY, 2024, 150