Determination of temperature and transverse flow velocity at chemical freeze-out in relativistic nuclear interactions

被引:17
|
作者
Panagiotou, AD
Mavromanolakis, G
Tzoulis, J
机构
[1] Physics Department, Nucl. and Particle Physics Division, University of Athens, GR-157 71 Athens, Hellas, Panepistimiopolis
来源
PHYSICAL REVIEW C | 1996年 / 53卷 / 03期
关键词
D O I
10.1103/PhysRevC.53.1353
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We propose a parameter-free method to determine the temperature of a thermalized state in relativistic nuclear interactions, using the experimental mu(q)/T and mu(s)/T values, obtained from strange particle ratios. The hadron gas formalism and strangeness neutrality are employed to relate the quark-chemical potential <mu(q), and mu(s) to the temperature and thus determine its value at chemical freeze-out. This temperature, together with the inverse slope parameter from m(T) distributions, enable the determination of the transverse flow velocity of the fireball matter, thus disentangling the thermal and how effects. We study several nucleus-nucleus interactions from AGS and SPS and obtain the temperature, transverse flow velocity, and quark-chemical potentials. Extrapolating the systematics we predict the values of these quantities for ongoing and future experiments at AGS, SPS, and RHIC. We discuss the possibility of reaching the conditions for quark deconfinement and QGP formation and give distinct and identifiable signature.
引用
收藏
页码:1353 / 1362
页数:10
相关论文
共 50 条
  • [21] Probing chemical freeze-out criteria in relativistic nuclear collisions with coarse grained transport simulations
    Tom Reichert
    Gabriele Inghirami
    Marcus Bleicher
    The European Physical Journal A, 2020, 56
  • [22] On freeze-out problem in relativistic hydrodynamics
    Yu. B. Ivanov
    V. N. Russkikh
    Physics of Atomic Nuclei, 2009, 72 : 1238 - 1244
  • [23] Chemical freeze-out and the QCD phase transition temperature
    Braun-Munzinger, P
    Stachel, J
    Wetterich, C
    PHYSICS LETTERS B, 2004, 596 (1-2) : 61 - 69
  • [24] Status of chemical freeze-out
    Cleymans, J.
    Oeschler, H.
    Redlich, K.
    Wheaton, S.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2006, 32 (12) : S165 - S169
  • [25] Strange messages: chemical and thermal freeze-out in nuclear collisions
    Heinz, U
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1999, 25 (02) : 263 - 274
  • [26] Extracting kinetic freeze-out temperature and radial flow velocity from an improved Tsallis distribution
    Hai-Ling Lao
    Fu-Hu Liu
    Roy A. Lacey
    The European Physical Journal A, 2017, 53
  • [27] Extracting kinetic freeze-out temperature and radial flow velocity from an improved Tsallis distribution
    Lao, Hai-Ling
    Liu, Fu-Hu
    Lacey, Roy A.
    EUROPEAN PHYSICAL JOURNAL A, 2017, 53 (03):
  • [28] Influence of correlations between yields on the chemical freeze-out temperature
    Prorok, Dariusz
    CHINESE JOURNAL OF PHYSICS, 2021, 72 : 126 - 135
  • [29] Particle freeze-out and discontinuities in relativistic hydrodynamics
    Bugaev, KA
    Gorenstein, MI
    Greiner, W
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1999, 25 (10) : 2147 - 2160
  • [30] TRANSVERSE HYDRODYNAMICS WITH SUDDEN ISOTRONZATION AND FREEZE-OUT
    Florkowski, Wojciech
    Ryblewski, Radoslaw
    EMMI WORKSHOP AND 26TH MAX BORN SYMPOSIUM: THREE DAYS OF STRONG INTERACTIONS, 2010, 3 (03): : 557 - 565