Probing chemical freeze-out criteria in relativistic nuclear collisions with coarse grained transport simulations

被引:0
|
作者
Tom Reichert
Gabriele Inghirami
Marcus Bleicher
机构
[1] Goethe Universität Frankfurt,Institut für Theoretische Physik
[2] Helmholtz Research Academy Hesse for FAIR,Department of Physics
[3] Campus Frankfurt,Helsinki Institute of Physics
[4] University of Jyväskylä,undefined
[5] University of Helsinki,undefined
[6] GSI Helmholtzzentrum für Schwerionenforschung GmbH,undefined
[7] John von Neumann-Institut für Computing,undefined
[8] Forschungszentrum Jülich,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a novel approach based on elastic and inelastic scattering rates to extract the hyper-surface of the chemical freeze-out from a hadronic transport model in the energy range from Elab=1.23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\mathrm {lab}=1.23$$\end{document} AGeV to sNN=62.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s_\mathrm {NN}}=62.4$$\end{document} GeV. For this study, the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model combined with a coarse-graining method is employed. The chemical freeze-out distribution is reconstructed from the pions through several decay and re-formation chains involving resonances and taking into account inelastic, pseudo-elastic and string excitation reactions. The extracted average temperature and baryon chemical potential are then compared to statistical model analysis. Finally we investigate various freeze-out criteria suggested in the literature. We confirm within this microscopic dynamical simulation, that the chemical freeze-out at all energies coincides with ⟨E⟩/⟨N⟩≈1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle E\rangle /\langle N\rangle \approx 1$$\end{document} GeV, while other criteria, like s/T3=7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s/T^3=7$$\end{document} and nB+nB¯≈0.12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_\mathrm {B}+n_{\bar{\mathrm {B}}}\approx 0.12$$\end{document} fm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-3}$$\end{document} are limited to higher collision energies.
引用
收藏
相关论文
共 50 条
  • [1] Probing chemical freeze-out criteria in relativistic nuclear collisions with coarse grained transport simulations
    Reichert, Tom
    Inghirami, Gabriele
    Bleicher, Marcus
    EUROPEAN PHYSICAL JOURNAL A, 2020, 56 (10):
  • [2] Temperatures and chemical potentials at kinetic freeze-out in relativistic heavy ion collisions from coarse grained transport simulations
    Inghirami, Gabriele
    Hillmann, Paula
    Tomasik, Boris
    Bleicher, Marcus
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2020, 47 (02)
  • [3] Hadronization and hadronic freeze-out in relativistic nuclear collisions
    Becattini, Francesco
    Bleicher, Marcus
    Kollegger, Thorsten
    Mitrovski, Michael
    Schuster, Tim
    Stock, Reinhard
    PHYSICAL REVIEW C, 2012, 85 (04):
  • [4] Energy and system size dependence of chemical freeze-out in relativistic nuclear collisions
    Becattini, F
    Manninen, J
    Gazdzicki, M
    PHYSICAL REVIEW C, 2006, 73 (04)
  • [5] Strange resonance production: probing chemical and thermal freeze-out in relativistic heavy ion collisions
    Bleicher, M
    Aichelin, J
    PHYSICS LETTERS B, 2002, 530 (1-4) : 81 - 87
  • [6] Chemical freeze-out in relativistic heavy-ion collisions
    Xu, Jun
    Ko, Che Ming
    PHYSICS LETTERS B, 2017, 772 : 290 - 293
  • [7] Strange messages: chemical and thermal freeze-out in nuclear collisions
    Heinz, U
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1999, 25 (02) : 263 - 274
  • [8] Comparison of chemical freeze-out criteria in heavy-ion collisions
    Cleymans, J
    Oeschler, H
    Redlich, K
    Wheaton, S
    PHYSICAL REVIEW C, 2006, 73 (03):
  • [9] Second virial coefficients of light nuclear clusters and their chemical freeze-out in nuclear collisions
    K. A. Bugaev
    O. V. Vitiuk
    B. E. Grinyuk
    V. V. Sagun
    N. S. Yakovenko
    O. I. Ivanytskyi
    G. M. Zinovjev
    D. B. Blaschke
    E. G. Nikonov
    L. V. Bravina
    E. E. Zabrodin
    S. Kabana
    S. V. Kuleshov
    G. R. Farrar
    E. S. Zherebtsova
    A. V. Taranenko
    The European Physical Journal A, 2020, 56
  • [10] Second virial coefficients of light nuclear clusters and their chemical freeze-out in nuclear collisions
    Bugaev, K. A.
    Vitiuk, O. V.
    Grinyuk, B. E.
    Sagun, V. V.
    Yakovenko, N. S.
    Ivanytskyi, O. I.
    Zinovjev, G. M.
    Blaschke, D. B.
    Nikonov, E. G.
    Bravina, L. V.
    Zabrodin, E. E.
    Kabana, S.
    Kuleshov, S. V.
    Farrar, G. R.
    Zherebtsova, E. S.
    Taranenko, A. V.
    EUROPEAN PHYSICAL JOURNAL A, 2020, 56 (11):