A bijective approach to the area of generalized Motzkin paths

被引:13
|
作者
Pergola, E [1 ]
Pinzani, R
Rinaldi, S
Sulanke, RA
机构
[1] Univ Florence, Dipartimento Sist & Imformat, I-50121 Florence, Italy
[2] Boise State Univ, Boise, ID 83725 USA
关键词
lattice paths; Motzkin paths; recurrences;
D O I
10.1006/aama.2001.0796
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For fixed positive integer k, let E-n denote the set of lattice paths using the steps (1, 1). (1, -1), and (k, 0) and running from (0, 0) to (n, 0) while remaining strictly above the x-axis elsewhere. We first prove bijectively that the total area of the regions bounded by the paths of E-n and the x-axis satisfies a four-term recurrence depending only on k. We then give both a bijective and a generating function argument proving that the total area under the paths of E-n equals the total number of lattice points on the x-axis hit by the unrestricted paths running from (0, 0) to (n - 2, 0) and using the same step set as above. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:580 / 591
页数:12
相关论文
共 50 条
  • [31] A Relation Between Schroder Paths and Motzkin Paths
    Yang, Lin
    Yang, Sheng-Liang
    GRAPHS AND COMBINATORICS, 2020, 36 (05) : 1489 - 1502
  • [32] Cyclic descents for Motzkin paths
    Han, Bin
    DISCRETE MATHEMATICS, 2023, 346 (08)
  • [33] Forces in Motzkin paths in a wedge
    van Rensburg, EJJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (07): : 1581 - 1608
  • [34] Crossings, Motzkin paths and moments
    Josuat-Verges, Matthieu
    Rubey, Martin
    DISCRETE MATHEMATICS, 2011, 311 (18-19) : 2064 - 2078
  • [35] Fluctuations of random Motzkin paths
    Bryc, Wlodzimierz
    Wang, Yizao
    ADVANCES IN APPLIED MATHEMATICS, 2019, 106 : 96 - 116
  • [36] Potential polynomials and Motzkin paths
    Sun, Yidong
    DISCRETE MATHEMATICS, 2009, 309 (09) : 2640 - 2648
  • [37] A partial order on Motzkin paths
    Fang, Wenjie
    DISCRETE MATHEMATICS, 2020, 343 (05)
  • [38] Restricted involutions and Motzkin paths
    Barnabei, Marilena
    Bonetti, Flavio
    Silimbani, Matteo
    ADVANCES IN APPLIED MATHEMATICS, 2011, 47 (01) : 102 - 115
  • [39] PEAKS AND VALLEYS IN MOTZKIN PATHS
    Brennan, Charlotte
    Mavhungu, Simon
    QUAESTIONES MATHEMATICAE, 2010, 33 (02) : 171 - 188
  • [40] From (2, 3)-Motzkin Paths to Schroder Paths
    Yan, Sherry H. F.
    JOURNAL OF INTEGER SEQUENCES, 2007, 10 (09)