A bijective approach to the area of generalized Motzkin paths

被引:13
|
作者
Pergola, E [1 ]
Pinzani, R
Rinaldi, S
Sulanke, RA
机构
[1] Univ Florence, Dipartimento Sist & Imformat, I-50121 Florence, Italy
[2] Boise State Univ, Boise, ID 83725 USA
关键词
lattice paths; Motzkin paths; recurrences;
D O I
10.1006/aama.2001.0796
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For fixed positive integer k, let E-n denote the set of lattice paths using the steps (1, 1). (1, -1), and (k, 0) and running from (0, 0) to (n, 0) while remaining strictly above the x-axis elsewhere. We first prove bijectively that the total area of the regions bounded by the paths of E-n and the x-axis satisfies a four-term recurrence depending only on k. We then give both a bijective and a generating function argument proving that the total area under the paths of E-n equals the total number of lattice points on the x-axis hit by the unrestricted paths running from (0, 0) to (n - 2, 0) and using the same step set as above. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:580 / 591
页数:12
相关论文
共 50 条