On the effects of archiving, elitism, and density based selection in evolutionary multi-objective optimization

被引:0
|
作者
Laumanns, M [1 ]
Zitzler, E [1 ]
Thiele, L [1 ]
机构
[1] Swiss Fed Inst Technol, Inst TIK, CH-8092 Zurich, Switzerland
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper studies the influence of what are recognized as key issues in evolutionary multi-objective optimization: archiving (to keep track of the current non-dominated solutions), elitism (to let the archived solutions take part in the search process), and diversity maintenance (through density dependent selection). Many proposed algorithms use these concepts in different ways, but a common framework does not exist yet. Here, we extend a unified model for multiobjective evolutionary algorithms so that each specific method can be expressed as an instance of a generic operator. This model forms the basis for a new type of empirical investigation regarding the effects of certain operators and parameters on the performance of the search process. The experiments of this study indicate that interactions between operators as well as between standard parameters (like the mutation intensity) cannot be neglected. The results lead not only to better insight into the working principle of multi-objective evolutionary algorithms but also to design recommendations that can help possible users in including the essential features into their own algorithms in a modular fashion.
引用
收藏
页码:181 / 196
页数:16
相关论文
共 50 条
  • [31] Advances in Evolutionary Multi-objective Optimization
    Tan, Kay Chen
    SOFT COMPUTING APPLICATIONS, 2013, 195 : 7 - 8
  • [32] Simultaneous feature selection and weighting - An evolutionary multi-objective optimization approach
    Paul, Sujoy
    Das, Swagatam
    PATTERN RECOGNITION LETTERS, 2015, 65 : 51 - 59
  • [33] Foundations of Evolutionary Multi-Objective Optimization
    Friedrich, Toblas
    Neumann, Frank
    GECCO-2010 COMPANION PUBLICATION: PROCEEDINGS OF THE 12TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2010, : 2557 - 2575
  • [34] Guidance in evolutionary multi-objective optimization
    Branke, J
    Kaussler, T
    Schmeck, H
    ADVANCES IN ENGINEERING SOFTWARE, 2001, 32 (06) : 499 - 507
  • [35] Advances in Evolutionary Multi-objective Optimization
    Bechikh, Slim
    Coello Coello, Carlos Artemio
    SWARM AND EVOLUTIONARY COMPUTATION, 2018, 40 : 155 - 157
  • [36] Multi-Objective Evolutionary Algorithm Based on Improved Clonal Selection
    Li, Shaobo
    Ma, Xin
    Li, Qin
    Yang, Guanci
    COMPUTER SCIENCE FOR ENVIRONMENTAL ENGINEERING AND ECOINFORMATICS, PT 2, 2011, 159 : 218 - +
  • [37] An Evolutionary Based Multi-Objective Filter Approach for Feature Selection
    Labani, Mahdieh
    Moradi, Parham
    Jalili, Mahdi
    Yu, Xinghuo
    2017 2ND WORLD CONGRESS ON COMPUTING AND COMMUNICATION TECHNOLOGIES (WCCCT), 2017, : 151 - 154
  • [38] Multi-objective Optimization Algorithm Based on Clonal Selection
    Hu, Yubo
    Chen, Tiejun
    SECOND INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING: WGEC 2008, PROCEEDINGS, 2008, : 265 - 268
  • [39] An elitism-based multi-objective evolutionary algorithm for min-cost network disintegration
    Li, Qian
    Liu, Sanyang
    Bai, Yiguang
    He, Xingshi
    Yang, Xin-She
    KNOWLEDGE-BASED SYSTEMS, 2022, 239
  • [40] A Multi-objective optimization based on adaptive environmental selection
    Weng Li-guo
    Ji, Zhuangzhuang
    Xia, Min
    Wang, An
    2013 2ND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND MEASUREMENT, SENSOR NETWORK AND AUTOMATION (IMSNA), 2013, : 999 - 1003