On the effects of archiving, elitism, and density based selection in evolutionary multi-objective optimization

被引:0
|
作者
Laumanns, M [1 ]
Zitzler, E [1 ]
Thiele, L [1 ]
机构
[1] Swiss Fed Inst Technol, Inst TIK, CH-8092 Zurich, Switzerland
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper studies the influence of what are recognized as key issues in evolutionary multi-objective optimization: archiving (to keep track of the current non-dominated solutions), elitism (to let the archived solutions take part in the search process), and diversity maintenance (through density dependent selection). Many proposed algorithms use these concepts in different ways, but a common framework does not exist yet. Here, we extend a unified model for multiobjective evolutionary algorithms so that each specific method can be expressed as an instance of a generic operator. This model forms the basis for a new type of empirical investigation regarding the effects of certain operators and parameters on the performance of the search process. The experiments of this study indicate that interactions between operators as well as between standard parameters (like the mutation intensity) cannot be neglected. The results lead not only to better insight into the working principle of multi-objective evolutionary algorithms but also to design recommendations that can help possible users in including the essential features into their own algorithms in a modular fashion.
引用
收藏
页码:181 / 196
页数:16
相关论文
共 50 条
  • [21] Multi-objective evolutionary algorithms based fuzzy optimization
    Sánchez, G
    Jiménez, F
    Gómez-Skarmeta, AF
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 1 - 7
  • [22] Modified Distance-based Subset Selection for Evolutionary Multi-objective Optimization Algorithms
    Chen, Weiyu
    Ishibuchi, Hisao
    Shang, Ke
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [23] An evolutionary multi-objective optimization framework of discretization-based feature selection for classification
    Zhou, Yu
    Kang, Junhao
    Kwong, Sam
    Wang, Xu
    Zhang, Qingfu
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 60
  • [24] Deep Reinforcement Learning Based Adaptive Operator Selection for Evolutionary Multi-Objective Optimization
    Tian, Ye
    Li, Xiaopeng
    Ma, Haiping
    Zhang, Xingyi
    Tan, Kay Chen
    Jin, Yaochu
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (04): : 1051 - 1064
  • [25] Effective response strategies based on adaptive selection for dynamic multi-objective evolutionary optimization
    Li, Xiaoli
    Cao, Anran
    Wang, Kang
    APPLIED SOFT COMPUTING, 2024, 162
  • [26] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [27] Multi-Objective Factored Evolutionary Optimization and the Multi-Objective Knapsack Problem
    Peerlinck, Amy
    Sheppard, John
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [28] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Weian Guo
    Ming Chen
    Lei Wang
    Qidi Wu
    Soft Computing, 2017, 21 : 5883 - 5891
  • [29] Parallel alternatives for evolutionary multi-objective optimization in unsupervised feature selection
    Kimovski, Dragi
    Ortega, Julio
    Ortiz, Andres
    Banos, Raul
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (09) : 4239 - 4252
  • [30] Evolutionary multi-objective optimization and visualization
    Obayashi, S
    New Developments in Computational Fluid Dynamics, 2005, 90 : 175 - 185