EDGE MODELING PREDICTION FOR COMPUTED TOMOGRAPHY IMAGES

被引:0
|
作者
Weinlich, Andreas [1 ,2 ]
Amon, Peter [2 ]
Hutter, Andreas [2 ]
Kaup, Andre [1 ]
机构
[1] Univ Erlangen Nurnberg, D-91054 Erlangen, Germany
[2] Siemens Corp Technol, Imaging & Comp Vis, Munich, Germany
关键词
Edge modeling prediction; predictive coding; lossless medical image compression; X-ray computed tomography; Gauss error function fitting; LOSSLESS COMPRESSION; CT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predictive coding is applied in many state-of-the-art loss-less image compression algorithms like JPEG-LS, CALIC, or least-squares-based methods. We propose a new approach for accurate intensity prediction in pixel-predictive coding of computed tomography (CT) images. Exploiting their particular edge characteristic, the method only relies on a small twelve-pixel context. It does neither require adaptation to larger-region image characteristics nor the transmission of side-information and therefore may be particularly suitable for compression of small images like in region-of-interest coding. While applying simple linear prediction with fixed weights in homogeneous regions, a Gauss error model-function is fit to given contexts in edge regions and then sampled at the position corresponding to the pixel to be predicted in order to obtain prediction values. By the example of CALIC, it is shown that for CT data the edge modeling prediction (EMP) approach can yield an even smaller prediction error than other methods relying on context modeling.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Classic Images: Cardiac Computed Tomography Foreword
    Rahimtoola, Shahbudin H.
    CURRENT PROBLEMS IN CARDIOLOGY, 2009, 34 (06) : 275 - 275
  • [42] A survey of pelvic types on computed tomography images
    Vucinic, Nikola
    Paulsen, Friedrich
    Milinkov, Milan
    Nikoli, Marijana Basta
    Tomasevi, Snezana
    Knezi, Nikola
    Nikoli, Uros
    ANNALS OF ANATOMY-ANATOMISCHER ANZEIGER, 2022, 243
  • [43] CORRECTION OF SCATTER IN COMPUTED-TOMOGRAPHY IMAGES
    HANGARTNER, TN
    CALCIFIED TISSUE INTERNATIONAL, 1989, 44 (02) : 146 - 146
  • [44] Proton computed tomography images with algebraic reconstruction
    Bruzzi, M.
    Civinini, C.
    Scaringella, M.
    Bonanno, D.
    Brianzi, M.
    Carpinelli, M.
    Cirrone, G. A. P.
    Cuttone, G.
    Lo Presti, D.
    Maccioni, G.
    Pallotta, S.
    Randazzo, N.
    Romano, F.
    Sipala, V.
    Talamonti, C.
    Vanzi, E.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2017, 845 : 652 - 655
  • [45] Adaptive truncation coding for computed tomography images
    Zhai, Zhenzhen
    Jiang, Huiqin
    Lu, Liping
    Liu, Yumin
    INFORMATION TECHNOLOGY, 2015, : 115 - 118
  • [46] Stereoscopic Images from Computed Tomography Angiograrns
    Lechanoine, Francois
    Smirnov, Mykyta
    Armani-Franceschi, Giulia
    Carneiro, Pedro
    Cottier, Philippe
    Destrieux, Christophe
    Maldonado, Igor Lima
    WORLD NEUROSURGERY, 2019, 128 : 259 - 267
  • [47] Kidney Stone Detection in Computed Tomography Images
    Akkasaligar, Prema T.
    Biradar, Sunanda
    Kumbar, Veena
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES FOR SMART NATION (SMARTTECHCON), 2017, : 353 - 356
  • [48] QUANTIFICATION OF COMPUTED TOMOGRAPHY PORK CARCASS IMAGES
    Bardera, Anton
    Boada, Imma
    Brun, Albert
    Font-i-Furnols, Maria
    Gispert, Marina
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1688 - 1692
  • [49] Stochastic modeling of coal fracture network by direct use of micro-computed tomography images
    Karimpouli, Sadegh
    Tahmasebi, Pejman
    Ramandi, Hamed Lamei
    Mostaghimi, Peyman
    Saadatfar, Mohammad
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2017, 179 : 153 - 163
  • [50] Finite element modeling of nano porous sintered silver material using computed tomography images
    Meyghani, B.
    Awang, M.
    Bokam, P.
    Plank, B.
    Heinzl, C.
    Siow, K. S.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2019, 50 (05) : 533 - 538