EDGE MODELING PREDICTION FOR COMPUTED TOMOGRAPHY IMAGES

被引:0
|
作者
Weinlich, Andreas [1 ,2 ]
Amon, Peter [2 ]
Hutter, Andreas [2 ]
Kaup, Andre [1 ]
机构
[1] Univ Erlangen Nurnberg, D-91054 Erlangen, Germany
[2] Siemens Corp Technol, Imaging & Comp Vis, Munich, Germany
关键词
Edge modeling prediction; predictive coding; lossless medical image compression; X-ray computed tomography; Gauss error function fitting; LOSSLESS COMPRESSION; CT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predictive coding is applied in many state-of-the-art loss-less image compression algorithms like JPEG-LS, CALIC, or least-squares-based methods. We propose a new approach for accurate intensity prediction in pixel-predictive coding of computed tomography (CT) images. Exploiting their particular edge characteristic, the method only relies on a small twelve-pixel context. It does neither require adaptation to larger-region image characteristics nor the transmission of side-information and therefore may be particularly suitable for compression of small images like in region-of-interest coding. While applying simple linear prediction with fixed weights in homogeneous regions, a Gauss error model-function is fit to given contexts in edge regions and then sampled at the position corresponding to the pixel to be predicted in order to obtain prediction values. By the example of CALIC, it is shown that for CT data the edge modeling prediction (EMP) approach can yield an even smaller prediction error than other methods relying on context modeling.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Risk prediction of pancreatic cancer using AI analysis of pancreatic subregions in computed tomography images
    Javed, Sehrish
    Qureshi, Touseef Ahmad
    Gaddam, Srinivas
    Wang, Lixia
    Azab, Linda
    Wachsman, Ashley Max
    Chen, Wansu
    Asadpour, Vahid
    Jeon, Christie Younghae
    Wu, Beichien
    Xie, Yibin
    Pandol, Stephen Jacob
    Li, Debiao
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [32] Synthesizing of Lung Tumors in Computed Tomography Images
    O'Briain, T.
    Yi, K. Moo
    Chitsazzadeh, S.
    Bazalova-Carter, M.
    MEDICAL PHYSICS, 2020, 47 (06) : E279 - E280
  • [33] Liver's segmentation on computed tomography images
    Yusta Gomez, Melanie
    Perez Diaz, Marlen
    Orozco Morales, Ruben
    Plasencia Hernandez, Xiomara
    MEDISUR-REVISTA DE CIENCIAS MEDICAS DE CIENFUEGOS, 2022, 20 (02): : 257 - 271
  • [34] POLYCHROMATIC STREAK ARTIFACTS IN COMPUTED TOMOGRAPHY IMAGES
    DUERINCKX, AJ
    MACOVSKI, A
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1978, 2 (04) : 481 - 487
  • [35] False images of endobronchial tumor by computed tomography
    Sanchez-Font, A.
    Vollmer, I.
    Gracia, M. P.
    Gayete, A.
    Curull, V.
    REVISTA CLINICA ESPANOLA, 2008, 208 (09): : 444 - 446
  • [36] Segmentation of Pancreatic Subregions in Computed Tomography Images
    Javed, Sehrish
    Qureshi, Touseef Ahmad
    Deng, Zengtian
    Wachsman, Ashley
    Raphael, Yaniv
    Gaddam, Srinivas
    Xie, Yibin
    Pandol, Stephen Jacob
    Li, Debiao
    JOURNAL OF IMAGING, 2022, 8 (07)
  • [37] Postmortem changes in the eye on computed tomography images
    Yoshimiya, Motoo
    Shimbashi, Shogo
    Hyodoh, Hideki
    LEGAL MEDICINE, 2024, 70
  • [38] Computed tomography images of entrapped epidural catheter
    Dam-Hieu, P
    Rodriquez, V
    de Cazes, Y
    Quinio, B
    REGIONAL ANESTHESIA AND PAIN MEDICINE, 2002, 27 (05) : 517 - 519
  • [39] ON THE NOISE IN IMAGES PRODUCED BY COMPUTED-TOMOGRAPHY
    HERMAN, GT
    COMPUTER GRAPHICS AND IMAGE PROCESSING, 1980, 12 (03): : 271 - 285
  • [40] Texture Classification of Lung Computed Tomography Images
    Pheng, Hang See
    Shamsuddin, Siti Mariyam
    INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2012), 2013, 8768