Fourier-Jacobi coefficients of Eisenstein series on unitary groups

被引:1
|
作者
Zhang, Bei [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60202 USA
关键词
Iwasawa main conjecture; unitary groups; Eisenstein series; Fourier-Jacobi expansion; doubling method; nonvanishing modulo p; THETA-FUNCTIONS; EXTENSIONS;
D O I
10.2140/ant.2013.7.283
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the Fourier-Jacobi expansions of Eisenstein series on U(3, 1). I relate the Fourier-Jacobi coefficients of the Eisenstein series with special values of L-functions. This relationship can be applied to verify the existence of certain Eisenstein series on U(3, 1) that do not vanish modulo p. This is a crucial step towards one divisibility of the main conjecture for GL(2) x K-x using the method of Eisenstein congruences.
引用
收藏
页码:283 / 337
页数:55
相关论文
共 50 条
  • [41] KUDLA'S MODULARITY CONJECTURE AND FORMAL FOURIER-JACOBI SERIES
    Bruinier, Jan Hendrik
    Westerholt-Raum, Martin
    FORUM OF MATHEMATICS PI, 2015, 3
  • [42] Kloosterman sums and Fourier coefficients of Eisenstein series
    Eren Mehmet Kıral
    Matthew P. Young
    The Ramanujan Journal, 2019, 49 : 391 - 409
  • [43] The sign changes of Fourier coefficients of Eisenstein series
    Benjamin Linowitz
    Lola Thompson
    The Ramanujan Journal, 2015, 37 : 223 - 241
  • [44] FOURIER COEFFICIENTS OF EISENSTEIN SERIES OF T DEGREE
    SIEGEL, CL
    MATHEMATISCHE ZEITSCHRIFT, 1968, 105 (04) : 257 - &
  • [45] On Fourier coefficients of Eisenstein-Hilbert series
    Arenas, Angela
    Garcia-Roig, Jaime-Luis
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (02) : 527 - 539
  • [46] Kloosterman sums and Fourier coefficients of Eisenstein series
    Kiral, Eren Mehmet
    Young, Matthew P.
    RAMANUJAN JOURNAL, 2019, 49 (02): : 391 - 409
  • [47] The sign changes of Fourier coefficients of Eisenstein series
    Linowitz, Benjamin
    Thompson, Lola
    RAMANUJAN JOURNAL, 2015, 37 (02): : 223 - 241
  • [48] Fourier coefficients of Sp(4) Eisenstein series
    Man, Siu hang
    ACTA ARITHMETICA, 2024, 213 (03) : 227 - 271
  • [49] Absolutely convergent Fourier-Jacobi series and generalized Lipschitz classes
    Saadi, Faouaz
    Daher, Radouan
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (04) : 334 - 345
  • [50] ON THE CONVERGENCE OF RANDOM FOURIER-JACOBI SERIES IN (Equation presented) SPACE
    Maharana, Partiswari
    Sahoo, Sabita
    arXiv, 2022,